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Abstract

This paper considers the problem of deploying a robot from a specification given as a temporal logic statement about

some properties satisfied by the regions of a large, partitioned environment. We assume that the robot has noisy sensors

and actuators and model its motion through the regions of the environment as a Markov decision process (MDP). The

robot control problem becomes finding the control policy which maximizes the probability of satisfying the temporal logic

task on the MDP. For a large environment, obtaining transition probabilities for each state–action pair, as well as solving

the necessary optimization problem for the optimal policy, are computationally intensive. To address these issues, we pro-

pose an approximate dynamic programming framework based on a least-squares temporal difference learning method of

the actor–critic type. This framework operates on sample paths of the robot and optimizes a randomized control policy

with respect to a small set of parameters. The transition probabilities are obtained only when needed. Simulations confirm

that convergence of the parameters translates to an approximately optimal policy.
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1. Introduction

One major goal in robot motion planning and control is to

specify a mission task in an expressive and high-level lan-

guage and to convert the task automatically to a control

strategy for the robot. The robot is subject to mechanical

constraints, actuation and measurement noise, and limited

communication and sensing capabilities. The challenge in

this area is the development of a computationally efficient

framework accommodating both the robot constraints and

the uncertainty of the environment, while allowing for a

large spectrum of task specifications.

In recent years, temporal logics such as linear temporal

logic (LTL) and computation tree logic (CTL) have been

promoted as formal task specification languages for robotic

applications (Loizou and Kyriakopoulos, 2004; Quottrup

et al., 2004; Kress-Gazit et al., 2007; Karaman and

Frazzoli, 2009; Wongpiromsarn et al., 2009; Bhatia et al.,

2010). They are appealing due to their high expressivity

and ability to formally capture informal requirements speci-

fied in human language. Moreover, several existing formal

verification (Clarke et al., 1999; Baier and Katoen, 2008)

and synthesis (Baier and Katoen, 2008; Liu et al., 2013;

Luna et al., 2014) tools can be adapted to generate motion

plans and provably correct control strategies for the robots.

In this paper, we assume that the motion of the robot in

the environment is described by a (finite) Markov decision

process (MDP). In this model, the robot can precisely

determine its current state (a discrete region in the environ-

ment), and by applying an action (corresponding to a

motion primitive) enabled at each state, it triggers a transi-

tion to an adjacent state (region) with a fixed probability.

We are interested in controlling the robot such that it maxi-

mizes the probability of satisfying a temporal logic formula

over a set of properties satisfied at the states of the MDP.

For simplicity, case studies presented in this paper focus on

actions which cause some motion or movement of the
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robot. However, our approach can be used for any generic

actions such as ‘‘take readings of a sensor’’ or ‘‘wait until

batteries are charged.’’ Such actions can be used in con-

junction with temporal logic to form specifications such as

‘‘take sensor readings in the building only after batteries

are charged.’’

By adapting existing probabilistic model checking (De

Alfaro, 1997; Vardi, 1999; Baier and Katoen, 2008) and

synthesis (Courcoubetis and Yannakakis, 1990; Baier et al.,

2004) algorithms, we (Ding et al., 2011; Lahijanian et al.,

2012) and others (Wolff et al., 2012) recently developed

such computational frameworks for formulae of LTL and a

fragment of probabilistic CTL. If the transition probabil-

ities for each state–action pair of the MDP are known, an

optimal control policy can be generated using the above

approaches to maximize the satisfaction probability. The

transition probabilities can be computed by using a Monte

Carlo method and repeated forward simulations.

Transition probabilities of the MDP, however, can be

difficult to obtain in practice. Previous approaches assumed

exact knowledge (Ding et al., 2011; Lahijanian et al.,

2012). Wolff et al. (2012) used an uncertain model of the

MDP to produce a robust optimal policy corresponding to

the worst-case transition probabilities. In this paper, we

assume no prior knowledge of the transition probabilities

and they are to be learned or computed via simulations on-

line. In the proposed approach, not all transition probabil-

ities of the MDP are needed. We only obtain the ones

needed by the algorithm during on-line execution.

In real applications, the size of the state space of the

MDP is usually very large. Our previous approaches are

not suitable for large-sized problems due to the following

limitations. First, they require transition probabilities for all

state–action pairs, which are costly to obtain even if an

accurate simulator of the robot in the environment is avail-

able. Second, the optimal policy is calculated by solving a

large linear programming (LP) problem on the product

between the original MDP and a Rabin automaton. The

existing LP solvers are not efficient enough and their mem-

ory usage increases rapidly with the problem size.

In this paper, we show that approximate dynamic pro-

gramming (Si, 2004; Bertsekas and Tsitsiklis, 1996) can be

effectively used to address the above limitations. For large

dynamic programming problems, an approximately optimal

solution can be provided using actor–critic algorithms

(Barto et al., 1983). By approximating both the policy and

state–action value function with a parameterized structure,

actor–critic algorithms use much less memory compared

with other dynamic programming techniques. In particular,

actor–critic algorithms with least squares temporal differ-

ence (LSTD) learning have been shown recently to be a

powerful tool for large-sized problems (Konda and

Tsitsiklis, 2003; Estanjini et al., 2011, 2012). Ding et al.

(2011) showed that a motion control problem with tem-

poral logic specifications could be converted to a maximal

reachability probability (MRP) problem, i.e. maximizing

the probability of reaching a set of states. In Estanjini et al.

(2011), we showed that the MRP problem is equivalent to a

stochastic shortest path (SSP) problem and proposed an

actor–critic method to solve the SSP problem. In Ding

et al. (2012), we applied the actor–critic method of

Estanjini et al. (2011) to find a control policy that maxi-

mizes the probability of satisfying a temporal logic specifi-

cation. Our proposed algorithm produces a randomized

stationary policy (RSP), which gives a probability distribu-

tion over enabled actions at a state. Our method requires

transition probabilities to be generated only along sample

paths, and is therefore particularly suitable for robotic

applications. To the best of our knowledge, this is the first

attempt to combine temporal logic formal synthesis with

actor–critic-type methods.

This paper builds on preliminary results previously pre-

sented in Estanjini et al. (2011) and Ding et al. (2012) in

several ways. First, we provide a proof for the equivalence

of the MRP and SSP problems. We also provide a proof of

convergence for our actor–critic method on the SSP prob-

lem. Compared with Ding et al. (2012), we propose a more

accurate safety score, which helps simplify the RSP struc-

ture. We include a case study with more complex temporal

logic specifications and present results showing that the

specifications are satisfied in a sample path generated by

the actor–critic method. Finally, we analyze the time and

memory usage of our actor–critic method for problems with

different sizes.

The remainder of the paper is organized as follows. In

Section 2, we formulate the motion control problem with

temporal logic specifications. Section 3 describes our

method to solve this problem. Section 4 illustrates our

experiment setups and presents the results accordingly.

Section 5 concludes the paper.

Notation

We use bold letters to denote sequences and vectors.

Vectors are assumed to be column vectors. Transpose of a

vector y is denoted by y0. Here jSj denotes the cardinality

of a set S.

2. Problem formulation

In this paper, we consider a robot moving in an environ-

ment partitioned into regions such as the Robotic Indoor

Environment (RIDE) (see Figure 1) (Lahijanian et al.,

2010). Each region in the environment is associated with a

set of properties. Properties can be Un for unsafe regions

or Up for a region where the robot can upload data. We

assume that the robot can detect its current region.

Moreover, the robot is programmed with a set of motion

primitives allowing it to move from a region to an adjacent

region. To capture noise in actuation and sensing, we make

the natural assumption that, at a given region, a motion pri-

mitive designed to take the robot to a specific adjacent

region may take the robot to a different adjacent region.
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Such a robot model naturally leads to a labeled MDP,

which is defined below.

Definition 2.1 (Labeled Markov Decision Process). A

labeled MDP is a tupleM= (Q, q0,U ,A,P,P, h), where:

(i) Q = {1,.,n} is a finite set of states;

(ii) q0 2 Q is the initial state;

(iii) U is a finite set of actions;

(iv) A: Q! 2U maps state q 2 Q to actions enabled at q;

(v) P: Q×U×Q! [0, 1] is the transition probability

function such that for all q 2 Q,
P

r2Q P(q, u, r)= 1

if u 2 A(q), and P(q, u, r) = 0 for all r 2 Q if

u;A(q);

(vi) P is a set of properties;

(vii) h: Q! 2P is the property map.

In RIDE platform, each state of the MDP M modeling

the robot in the environment corresponds to an ordered set

of regions in the environment, while the actions label the

motion primitives that can be applied at a region. In this

example, a state of M is labeled as I1–C1, which means

that the robot is currently at region C1, coming from region

I1. Each ordered set of regions corresponds to a recent his-

tory of the robot trajectory, and is needed to ensure the

Markov property (more details on such MDP abstractions

of the robot in the environment can be found in e.g.

Lahijanian et al. (2012). The transition probability function

P can be obtained through extensive simulations of the

robot in the environment. We assume that there exists an

accurate simulator that is capable of generating (comput-

ing) the transition probability P(q, u,�) for each state–action

pair q 2 Q and u 2 A(q). In our previous work (Lahijanian

et al., 2012), we developed such a simulator for the robot

shown in Figure 1. More details on the construction of the

MDP model for a robot in the RIDE platform are included

in Section 4.

A path on M is a sequence of states q = q0q1. such

that for all k � 0, there exists uk 2 A(qk) such that P(qk,

uk, qk + 1) . 0. Along a path q = q0q1., qk is said to be

the state at time k. The trajectory of the robot in the envi-

ronment is represented by a path q on M (which corre-

sponds to a sequence of regions in the environment). A

path q = q1q2. generates a sequence of properties

h(q) := o1o2., where ok = h(qk) for all k � 0. We call

o = h(q) the word generated by q. A path on M can be

mapped directly to a sequence of region transitions in the

environment. Note that, due to how the state is labeled (as

the current region label followed by the previous label), the

current region-label associated with each state of a path

must match the previous region-label of the following

state.

Definition 2.2 (Policy). A control policy for a MDP M is

an infinite sequence M = m0m1., where mk : Q×U!
[0, 1] is such that

P
u2A(q) mk(q, u)= 1, for all k � 0 and

for all q 2 Q.

Namely, at time k, mk(q,�) is a discrete probability distri-

bution over A(q). If mk = m for all k � 0, then M = mm.
is called a stationary policy. If for all k � 0 and for all

q 2 Q, mk(q, u) = 1 for some u, then M is deterministic;

otherwise, M is randomized. Given a policy M, we can then

generate a sequence of states on M, by applying uk with

probability mk(qk, uk) at state qk for all time k. Such a

sequence is called a path ofM under policy M.

We require the trajectory of the robot in the environment

to satisfy a rich task specification given as an LTL (see,

e.g., Baier and Katoen, 2008; Clarke et al., 1999) formula

over a set of properties P. An LTL formula over P is eval-

uated over an (infinite) sequence o = o0o1. (e.g. a word

generated by a path on M), where ok 4 P for all k � 0.

We denote o~f if word o satisfies the LTL formula f,

and we say q satisfies f if h(q) ~f. Roughly, f can be

constructed from a set of properties P, Boolean operators

: (negation), _ (disjunction), ^ (conjunction),! (implica-

tion), and temporal operators X (next), U (until), F (eventu-

ally), G (always). A variety of robotic tasks can be easily

translated to LTL formulas. For example, the following

complex task command in natural language: ‘‘Gather data

at locations Da infinitely often. Only reach a risky region

Ri if valuable data VD can be gathered, and always avoid

unsafe regions (Un)’’ can be translated to the LTL formula:

f :¼ GFDa ^G(Ri! VD) ^G:Un

In Ding et al. (2011) (see also Rutten et al., 2004), we

consider the following problem.

Problem 2.3. Given a labeled MDP M= (Q, q0,U ,A,
P,P, h) and a LTL formula f, find a control policy that

maximizes the probability of its path satisfying f.

Fig. 1. Robotic Indoor Environment (RIDE) platform. (Left) An

iCreate mobile platform moving autonomously through the

corridors and intersections of an indoor-like environment. The

robot is equipped with a RFID reader that can correctly identify

cards placed on the floor and with a laser range finder that is

used to implement motion primitives such as GoLeft and

GoForward in an intersection, etc. (Right) An example

schematic of the environment. The black blocks represent walls,

and the grey and white regions are intersections and corridors,

respectively. The labels inside a region represent properties

associated with regions, such as Un (unsafe regions) and Ri

(risky regions).
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The probability that paths generated under a policy m

satisfy an LTL formula f is well defined with a suitable

measure over the set of all paths generated by m (Baier and

Katoen, 2008).

In Ding et al. (2011), we proposed a computational

framework to solve Problem 2.3, by adapting methods from

the area of probabilistic model checking (De Alfaro, 1997;

Vardi, 1999; Baier and Katoen, 2008). However, this

framework relies upon the fact that the transition probabil-

ities are known for all state–action pairs. These transition

probabilities are typically not directly available and often

computationally expensive to compute. Moreover, even if

the transition probabilities are obtained for each state–

action pair, this method still requires solving a linear

program on the product of the MDP and the automata rep-

resenting the formula, which can be very large (thousands

or even millions of states).

If the exact transition probabilities are not known, M
can be seen as a labeled non-deterministic transition system

(NTS) MN = (Q, q0,U ,A,PN ,P, h), where PN is the

mapping Q×U×Q!{0, 1}, such that PN (q, u, r)= 1

indicates that a transition from q to r exists after applying

an enabled action u 2 A(q) and PN (q, u, r)= 0 indicates

that no transition from q to r is possible under u. In many

robotic applications, the NTS model MN = (Q, q0,U ,A,
PN ,P, h) can be quickly constructed for the robot in the

environment and a simulator is available to generate actual

transition probabilities ‘‘on the fly.’’ Motivated by this, we

focus on the following problem in this paper.

Problem 2.4. Given a labeled NTS MN = (Q, q0,U ,
A,PN ,P, h), an LTL formula f, and an accurate simula-

tor to compute transition probabilities P(q, u,�) given a

state–action pair (q, u), find a control policy that maxi-

mizes the probability of its path satisfying f.

Transition probabilities for all state–action pairs are nec-

essary for exact optimal solution of Problem 2.4. In this

paper, we propose an approximate method that only needs

transition probabilities for a portion of state–action pairs.

Our approach to Problem 2.4 can be summarized as fol-

lows. First, we formulate the problem as a MRP problem

usingMN and f (Section 3.1), and convert the MRP prob-

lem into a SSP problem. We then use an actor–critic frame-

work to find a randomized policy giving an approximate

solution to the SSP problem (Section 3.3). The randomized

policy is constructed to be a function of a small set of para-

meters and we find a policy that is locally optimal with

respect to these parameters. The construction of a class of

policies suitable for SSP problems is explained in Section

3.4. The algorithmic framework presented in this paper is

summarized in Section 3.5.

3. Control synthesis

3.1. Formulation of the MRP problem

The formulation of the MRP problem is based on Ding

et al. (2011), De Alfaro (1997), Baier and Katoen (2008)

and Vardi (1999), with the exception that the MDP is

replaced by the NTS. We start by converting the LTL for-

mula f over P to a so-called deterministic Rabin automa-

ton, which is defined as follows.

Definition 3.1 (Deterministic Rabin automaton). A deter-

ministic Rabin automaton (DRA) is a tuple

R= (S, s0,S, d,F), where:

(i) S is a finite set of states;

(ii) s0 2 S is the initial state;

(iii) S is a set of inputs (alphabet);

(iv) d : S×S!S is the transition function;

(v) F = {(L(1), K(1)),.,(L(M), K(M))} is a set of pairs

of sets of states such that L(i), K(i) 4S for all

i = 1,.,M.

A run of a Rabin automaton R, denoted by r = s0s1.,

is an infinite sequence of states in R such that for each k

� 0, sk + 1 2 d(sk, a) for some a 2 S. A run r is accepting

if there exists a pair (L, K) 2 F such that r intersects with

L finitely many times and K infinitely many times. For any

LTL formula f over P, one can construct a DRA (which

we denote by Rf) with input alphabet S = 2P accepting

all and only words over P that satisfy f (see Gradel et al.,

2002).

We then obtain a MDP as the product of a labeled MDP

M and a DRA Rf, which captures all paths ofM satisfy-

ing f. Note that this product MDP can only be constructed

from a MDP and a deterministic automaton, this is why we

require a DRA instead of, e.g., a (generally non-determinis-

tic) Büchi automaton (see Baier and Katoen, 2008).

Definition 3.2 (Product MDP). The product MDP

M×Rf between a labeled MDP M= (Q, q0,U ,
A,P,P, h) and a DRA Rf = (S, s0, 2

P, d,F) is a MDP

P= (SP , sP0,UP ,AP ,PP ,FP) where:

(i) SP = Q× S is a set of states;

(ii) sP0 = (q0, s0) is the initial state;

(iii) UP = U is a set of actions inherited fromM;

(iv) AP is also inherited fromM and AP((q, s)) :¼ A(q) ;

(v) PP gives the transition probabilities

PP((q1, s1), u, (q2, s2))=

P(q1, u, q2), if q2 = d(s1, h(q1)),

0, otherwise

�
(vi) FP = f(LP(1),KP(1)), . . . , (LP(M),KP(M))g is a set

of accepting states, where LP(i)= Q× L(i),
KP(i)= Q×K(i), for i = 1,.,M.

The product MDP is constructed such that, given a path

(s0, q0)(s1, q1)., the corresponding path s0s1. on M
satisfies f if and only if there exists a pair (LP ,KP) 2 FP
satisfying the Rabin acceptance condition, i.e. the set KP is
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visited infinitely often and the set LP is visited finitely

often.

We can make a very similar product between a labeled

NTS MN = (Q, q0,U ,A,PN ,P, h) and Rf. This product

is also a NTS, which we denote by PN = (SP, sP0,UP ,
AP,PNP ,P,FP) :¼MN ×Rf. The definition (and the

accepting condition) of PN is exactly the same as for the

product MDP. The only difference between PN and P is in

PNP , which is either 0 or 1 for every state–action–state

tuple.

From the product P or equivalently PN , we can proceed

to construct the MRP problem. To do so, it is necessary to

produce the so-called accepting maximum end components

(AMECs). An end component is a subset of a MDP (con-

sisting of a subset of states and a subset of enabled actions

at each state) such that for each pair of states (i, j) in P,

there is a sequence of actions such that i can be reached

from j with positive probability, and states outside the com-

ponent cannot be reached. The definition of AMECs is as

follows (Baier and Katoen, 2008).

Definition 3.3 (Accepting maximal end components).

Given (LP ,KP) 2 FP , an AMEC of P is the largest end

component containing at least one state in KP and no state

in LP , for a pair (KP , LP) 2 FP.

If an execution of a product MDP reaches a state in an

AMEC, any state outside the AMEC will not be reachable

under any policy. A procedure to obtain all AMECs of a

MDP is outlined by Baier and Katoen (2008). This proce-

dure is intended to be used for the product MDP P, but it

can be used without modification to find all AMECs asso-

ciated with P when PN is used instead of P. This is

because the information needed to construct the AMECs is

the set of all possible state transitions at each state, and this

information is already contained in PN . Note that the com-

putation of AMECs, whose time complexity is quadratic to

the size of P or PN , cannot be avoided in any method as

long as the LTL formula is not co-safe (Baier and Katoen,

2008). As a result, we exclude the time of calculating

AMECs when comparing our actor–critic algorithm with

alternative methods. For a co-safe LTL formula, this com-

putation cost can be avoided by using deterministic finite

automaton (DFA) instead of DRA (Baier and Katoen,

2008).

If we denote by SH

P as the union of all states in all

AMECs associated with P, it has been shown in probabil-

istic model checking (see e.g. Baier and Katoen, 2008) that

maximizing the probability of satisfying the LTL formula

is equivalent to a MRP problem whose definition is as

follows.

Problem 3.4. Given a product MDP P= (SP , sP0,UP ,
AP,PP ,FP) and a set of states SH

P � SP , find the optimal

policy m that maximizes the probability of reaching the

set SH

P .

If transition probabilities are available for each state–

action pair, then Problem 3.4 can be solved by a linear pro-

gram (see Puterman, 1994; Baier and Katoen, 2008). The

resultant optimal policy is deterministic and is a huge table

containing optimal controls for each state s in P. In this

paper, we approximate the optimal policy m with a parame-

terized policy mu, which improves computation efficiency

by taking advantage of prior knowledge of the policy

structure.

By the definition of AMECs, if an execution of the prod-

uct MDP reaches SH

P , it cannot leave it. We call such a state

set absorbing state set. Intuitively, the only case when the

state does not reach SH

P is because it is ‘‘trapped’’ in another

set of states.

Definition 3.5 (Trap state). A trap state is a state on prod-

uct MDP P that cannot reach SH

P under any policy.

We will describe the method to calculate trap states in

Section 3.4. Denoting by �SH

P the set of all trap states, we

present the following theorem.

Theorem 3.6. The set �SH

P is an absorbing state set of prod-

uct MDP P. Furthermore, in product MDP P, there is no

absorbing state set in states SP=(�S
H

P [ SH

P ).

Proof. Assume that there is a state sA
P 2 �SH

P and a state

sB
P 62 �SH

P such that sB
P is accessible from sA

P under a certain

policy. By definition of �SH

P , SH

P should not be accessible

from sA
P . However, sH

P is accessible from sB
P , thus, it is

accessible from sA
P . This contradiction shows that no state

out of �SH

P is accessible from any state in �SH

P , thus, �SH

P is an

absorbing state set.

Suppose also that there exists some other absorbing state

set that does not intersect with either SH

P or �SH

P . By defini-

tion, states in such an absorbing state state should be trap

states, thus, this set should be a subset of �SH

P , which brings

us to a contradiction. j

Remark 3.7. Theorem 3.6 suggests that Problem 3.4 is

equivalent to the problem of minimizing the probabilities of

reaching the set �SH

P .

Remark 3.8. It is only necessary to find the optimal policy

for states not in the set SH

P . This is because, by construc-

tion, there exists a policy inside any AMEC that almost

surely satisfies the LTL formula f by reaching a state in

KP infinitely often. This policy can be obtained by simply

choosing an action (among the subset of actions retained

by the AMEC) at each state randomly, i.e. a trivial rando-

mized stationary policy exists that almost surely satisfies f.

3.2. Conversion from MRP to a SSP problem

Although a linear program can be used to solve Problem

3.4, it has high time and memory complexity. In particular,

it requires transition probabilities for all states of the prod-

uct MDP. In many situations, we only have a simulator to

generate the transition probabilities on the fly, and due to

the large state space, we want to avoid simulating transi-

tions at all states.

The so-called approximate dynamic programming (also

known as neuro-dynamic programming or reinforcement

Wang et al. 1333



learning) can help solve these issues (Bertsekas, 1995;

Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). In

order to apply techniques in approximate dynamic pro-

gramming, we need to convert the MRP problem into a sto-

chastic shortest path (SSP) problem. We define the

following new MDP based on the product MDP.

Definition 3.9 (SSP MDP). Given the product MDP

P= (SP , sP0,UP ,AP ,PP ,FP) and a set of states SH

P � SP ,

define a new MDP eP = (~SP ,~sP0, ~UP , ~AP , ~PP), where:

(i) ~SP = (SP n SH

P ) [ fsH

Pg, where sH

P is a ‘‘dummy’’ ter-

minal state;

(ii) ~sP0 = sP0 (without loss of generality, we exclude the

trivial case where sP0 2 SH

P );

(iii) ~UP = UP ;

(iv) ~AP(sP)= AP(sP) for all sP 2 SP , and for the dummy

state we set ~AP(s
H

P )= ~UP ;

(v) The transition probabilities is redefined as follows

~PP(sP , u,~sP)

=

P
s2SH

P

PP(sP , u, s), if ~sP = sH

P ,

PP(sP , u,~sP), if ~sP 2 SP n SH

P ,

8<:
for all sP 2 SP n (SH

P [ �SH

P ) and u 2 ~UP . Moreover, for all

sP 2 �SH

P and u 2 ~UP, we set ~PP(s
H

P , u, sH

P )= 1 and
~PP(sP , u, sP0)= 1 ;

For all sP 2 ~SP and u 2 ~UP, we define a one-step cost

function ~gP(sP , u)= 1 if sP 2 �SH

P , and ~gP(sP , u)= 0 other-

wise. Then the SSP problem is defined as follows.

Problem 3.10. Given a SSP MDP eP = (~SP ,~sP0,
~UP , ~AP , ~PP) and a one-step cost function ~gP , find a policy

m to minimize the expected total cost

�am = E
XTH

k = 0

~gP(xk , uk)

( )
ð1Þ

where Twis the first time when sH

P is reached, and xk and uk

are the state and the action at time k, respectively.

Remark 3.11. In product MDP P, both SH

P and �SH

P are

absorbing state sets. In contrast, in SSP MDP eP, sH

P is the

only absorbing state; whenever the state reaches �SH

P , it

returns to the initial state ~sP0 (as if the process restarts).

The expected total cost �am in (1) is the expected total num-

ber of falls into �SH

P before reaching sH

P in SSP MDP eP.

Let RPm be the reachability probability in Problem 3.4

under policy m. The following lemma presents the relation-

ship between RPm and the expected total cost �am defined

in (1).

Lemma 3.12. For any RSP m, we have RPm = 1= �am + 1
� �

.

Proof. According to the definition of the cost function, we

know that �am is the expected number of times when states

in �SH

P are visited before the termination state sH

P is reached

in SSP MDP eP. From the construction of eP , reaching sH

P

in eP is equivalent to reaching one of the goal states SH

P in

P. On the other hand, in the Markov chain generated by

applying policy m to P, the states SH

P and �SH

P are the only

absorbing state sets, and all other states are transient. Thus,

the probability of visiting a state in �SH

P from sP0 on P is

1�RPm , which is the same as the probability of visiting

�SH

P for each run of eP , due to the construction of transition

probabilities in Definition 3.9. We can now consider a geo-

metric distribution where the probability of success is RPm .

Because �am is the expected number of times when a state

in �SH

P is visited before sH

P is reached, this is the same as the

expected number of failures of Bernoulli trails (with prob-

ability of success being RPm ) before a success. This implies

�am =
1�RPm
RPm

.

Lemma 3.12 states that the policy minimizing (1) for

Problem 3.10 with MDP eP and the termination state sH

P is

a policy maximizing the probability of reaching the set SH

P
on P, i.e. a solution to Problem 3.4.

Problem 3.10 can also be constructed from the NTS

PN . In this case we obtain an NTS ePN (~SP ,~sP0,
~UP , ~AP , ~PNP ), using the exact same construction as

Definition 3.9, except for the definition of ~PNP . The transi-

tion function ~PNP (sP , u,~sP) is instead defined as

~PNP (sP , u,~sP)=
max
s2SH

P

PNP (sP , u, s), if ~sP = sH

P

PNP (sP , u,~sP), if ~sP 2 SP n SH

P

8<:
for all sP 2 SP n (SH

P [ �SH

P ) and u 2 ~UP . Moreover, for all

sP 2 �SH

P and u 2 ~UP, we set ~PNP (s
H

P , u, s
H

P )= 1 and
~PNP (sP , u, sP0)= 1.

In many robotic applications, the NTS ePN can be

quickly constructed for the robot in the environment and a

simulator is available to generate ‘‘transition probabilities’’

on the fly. In our method, it is sufficient to have the NTSePN and a simulator to calculate transition probabilities.

3.3. LSTD actor–critic method

In this section, we propose an action-critic method that

obtains an RSP (see Definition 2.2) M = mumu., where

mu(x, u) is a function of the state–action pair (x, u) and

u 2 R
n, which is a vector of parameters. For convenience,

we denote an RSP mumu. simply by mu. In addition, we

denote the expected total cost defined in (1) by �a(u). In this

section we assume the RSP mu(q, u) to be given, and we

will describe in Section 3.4 how to design a suitable RSP.

Similar to Konda (2002), we also assume that either infu

mu . 0 or mu[ 0, for all u.

Given an RSP mu, we apply an iterative procedure, i.e.

an actor–critic method, to obtain a policy that locally mini-

mizes the cost function (1) by simulating sample paths oneP . Each sample path on eP starts at ~sP0 and ends when the

termination state sH

P is reached. Since the probabilities are
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needed only along the sample path, we do not require the

MDP eP, but only ePN .

As suggested by the name, actor–critic algorithms have

two learning units, an actor and a critic, interacting with

each other and with the MDP during the iterations of the

algorithms. At each iteration, the critic observes the state

and the one-step cost from the MDP and uses the observed

information to update a value function. The value function

is then used to update the RSP; the actor generates the

action based on the RSP and applies the action to the MDP

(cf. Figure 2). The algorithm stops when the gradient of

�a(u) is small enough (i.e. u is locally optimal).

Consider the SSP MDP eP. Let k denote time, xk 2 ~SP
and uk 2 ~AP(xk) be the state and the action taken at time k.

Under a fixed policy mu, {xk} and {xk, uk} are Markov

chains with stationary distributions. We denote these sta-

tionary distributions as pu(x) and hu(x, u), respectively.

Let Pu be an operator to take expectation after one tran-

sition, namely, for a function f(x, u),

(Puf )(x, u)=
X
j2~SP

X
n2~AP (j)

~PP(x, u, j)mu(j, n)f (j, n)

Define the function Qu to be the function that satisfies the

following Poisson equation:

Qu(x, u)= gP(x, u)+ (PuQu)(x, u) ð2Þ

Here Qu(x, u) can be interpreted as the expected total

future cost after applying action u at state x and is named

as the state–action value function (Sutton and Barto, 1998;

Estanjini et al., 2011). Let

cu(x, u)=ru ln (mu(x, u)) ð3Þ

where cu(x, u) = 0 when x, u are such that mu(x, u) [ 0,

for all u. We assume that cu(x, u) is bounded and continu-

ously differentiable. For all states x 2 ~SP and actions

u 2 ~AP(x), cu(x, u) is an n-dimensional vector, where n is

the dimensionality of u. We write cu(x, u)=
(c1

u(x, u), . . . ,cn
u(x, u)). Let h�,�i be an inner product opera-

tor defined as follows:

rhf1, f2i=
X
x2~SP

X
u2~AP (x)

hu(x, u)f1(x, u)f2(x, u) ð4Þ

where f1(x, u) and f2(x, u) are two functions. It has been

proved that the gradient of the expected total cost �a(u) is

equal to (Konda, 2002)

r�a(u)= hQu,cui ð5Þ

Instead of storing Qu explicitly, which is a huge table, we

approximate Qu with a linear architecture of the following

form

Qr
u(x, u)= c0u(x, u)r, r 2 R

n ð6Þ

Let k�k be the norm induced by the inner product operator

h�,�i, i.e. kfk2 = hf, fi. The optimal coefficient rw should

satisfy

rH = argmin
r

Qu � Qr
u

�� �� ð7Þ

Temporal difference algorithms can be leveraged to learn

the optimal coefficient rw. As a property of inner products,

the linear approximation in (6) does not change the esti-

mate of the gradient r�a(u) if the optimal coefficient rw in

(7) is used. Furthermore, the linear approximation reduces

the complexity of learning from the space R
jXjjUj to the

space R
n, where n is the dimensionality of u (Konda, 2002;

Estanjini et al., 2012).

In this paper, we present an actor–critic algorithm that

uses LSTD learning to estimate rw. We summarize the

algorithm, which is referred to as LSTD actor–critic algo-

rithm, in Algorithm 1, and we note that it does not depend

on the form of RSP mu. In each iteration, we first compute

the transition probabilities ~PP(xk , uk , � ) using a simulator

(step 3 of Algorithm 1). Note that in contrast to the linear

programming-based method of Ding et al. (2011), the tran-

sition probabilities are generated only when needed. This

approach is suitable for problems with a large state space

and strict memory requirements. Next, we obtain the simu-

lated next state xk + 1 based on the transition probabilities

and obtain an action uk + 1 based on the current RSP muk

(step 4 and 5 of Algorithm 1). Then, we update our estimate

of r in the critic step (step 6 of Algorithm 1), and update

our estimate of u in the actor step (step 7 of Algorithm 1).

In the critic step, zk 2 R
n represents Sutton’s eligibility

trace (Sutton and Barto, 1998; Konda, 2002); bk 2 R
n

maintains a sample estimate for one-step cost; Ak 2 R
n× n

is a sample estimate for the matrix formed by

zk(cuk
(xk + 1, uk + 1)� cuk

(xk , uk)). Here rk is a least-

squares estimate of r.

In the actor step, r0kcuk
(xk + 1, uk + 1)cuk

(xk + 1, uk + 1) is a

sample estimate of the gradient r�a(u) (cf. (5)). The actor

step is simply a gradient descent update. The role of G(r) is

mainly to keep the actor updates bounded, and we can for

instance use G(r)= min ( D
rk k , 1) for some D . 0.

In Algorithm 1, {gk} controls the critic step-size, while

{bk} control the actor step-size together. We leave the proof

of convergence for Algorithm 1 as well as the requirements

for the step-sizes to the appendix.

Fig. 2. Illustration of actor–critic methods (adapted from Konda,

2002).
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Algorithm 1 learns the critic parameters using a LSTD

method, which has been shown to be superior to other sto-

chastic learning methods in terms of the convergence rate

(Konda and Tsitsiklis, 2003; Boyan, 1999). Estanjini et al.

(2012) proposed and established the convergence of a

LSTD actor–critic method similar to Algorithm 1 for prob-

lems of minimizing expected average costs. In comparison,

the goal of the Problem 3.10 in this paper is to minimize

an expected total cost (cf. (1)). The output of Algorithm 1

is a (locally) optimal policy parameter uw. The correspond-

ing policy muH (locally) maximizes the satisfaction prob-

ability of the RSP (12).

Compared with some existing efforts of applying

approximate dynamic programming techniques in robot

motion control, the actor–critic algorithm used in this paper

is very suitable for large-scale problems. For example, the

method in (Fu and Topcu, 2014) is based on value iteration.

Value iteration is a classical dynamic programming tech-

nique, but it is suitable only for MDPs with small state

spaces because of its high time and memory complexity

(Bertsekas, 1995). In addition, value iteration requires tran-

sition probabilities at all states. The method in (Sadigh

et al., 2014) is also based on temporal difference learning,

however, it uses a lookup-table representation of the value

function, i.e. it explicitly stores the expected future cost for

each state. Again memory requirements can be enormous

for large-sized problems. In contrast, in our actor–critic

algorithm, only the coefficients r need to be stored since

the value function Qu(x, u) is expressed as linear

combination of some basis functions. The problems consid-

ered in both Fu and Topcu (2014) and Sadigh et al. (2014)

are much smaller than ours. It is worth noting that in the

context of approximate dynamic programming, the poor

scalability of value iteration and lookup-table-based tem-

poral difference methods is an important motivation for

actor–critic methods (Bertsekas and Tsitsiklis, 1996;

Konda, 2002).

Theorem 3.13. [Actor convergence] For the LSTD actor–

critic algorithm (Algorithm 1) with some step-size

sequence {bk} satisfying

X
k

bk = ‘,
X

k

b2
k\‘, lim

k!‘

bk

gk

= 0 ð8Þ

and for any e . 0, there exists some l sufficiently close

to 1, such that lim infk!‘ r�a(uk)k k\e w.p.1. That is, uk

visits an arbitrary neighborhood of a stationary point infi-

nitely often.

Proof. See the Appendix.

3.4. Designing a RSP

In this section we describe a RSP suitable to be used in

Algorithm 1 for Problem 3.10. We first describe some

‘‘features’’, i.e. progress and safety scores for each state.

Then we define some ‘‘desirability degrees’’ for controls in

Algorithm 1. LSTD actor–critic algorithm for Problem 3.10.

Input: The NTS ePN (~SP ,~sP0, ~UP , ~AP , ~PNP , gP) with the terminal state sH

P , the RSP mu, and a computation tool to obtain ~PP(sP , u, � )
for a given (sP , u) state–action pair.

1: Initialization: Set all entries in z0, b0 and r0 to zeros. Set A0 to identity matrix. Let u0 take some initial value. Set initial state
x0 :¼ ~sP0. Obtain action u0 using the RSP mu0

.

2: repeat

3: Compute the transition probabilities ~PP(xk , uk , � ).
4: Obtain the simulated subsequent state xk + 1 using the transition probabilities ~PP(xk , uk , � ). If xk = sH

P , set xk + 1 := x0.

5: Obtain action uk + 1 using the RSP muk

6: Critic Update:

zk + 1 = lzk + cuk
(xk , uk)

bk + 1 = bk + gk ~gP(xk , uk)zk � bkð Þ
Ak + 1 =Ak + gk(zk(c

0
uk
(xk + 1, uk + 1)� c0uk

(xk , uk))

�Ak)

rk + 1 =�A�1
k bk

7: Actor Update:

uk + 1 = uk � bkG(rk)r
0
kcuk

(xk + 1, uk + 1)cuk
(xk + 1, uk + 1)

8: until r�a(uk)k k� e for some given e.
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each state and propose an RSP based on the Boltzmann

distribution.

We define the overlay graph Go = (Vo, Eo) for NTS ePN
as an unweighted graph whose vertex set V0 = ~SP . For any

pair of states i, j 2 ~SP , we have (i, j) 2 Eo if ~PNP (i, u, j)= 1

for some u 2 AP(i), i.e. j is reachable from i in one step in

the NTS. Let dg(i) be the shortest distance from state i to

the ‘‘dummy’’ terminal state sH

P in Go. The distance dg(�)
can be efficiently calculated using breath-first search (BFS)

with O(jVoj + jEoj) time complexity and O(jVoj) space

complexity (Cormen et al., 2001).

Recall that the trap states (cf. Def. 3.5) are states on ePN
that cannot reach sH

P under any policy, hence, they have

infinite distance dg(�) to sH

P . In order to obtain the trap state

set �SH

P , we need to calculate the distance dg(i) for all states i

and let �SH

P = i : dg(i)= ‘
� �

. Note the LP method described

in Ding et al. (2011) also needs to calculate �SH

P by calculat-

ing dg(�) first.

We define the progress score of a state i 2 ~SP as

prog(i) :¼ �dg(i) ð9Þ

Larger progress score means the state is closer to sH

P in Go,

thus, it is more likely to hit sH

P in the near future.

Let mnull be a ‘‘null policy’’ in which each action is cho-

sen with equal probability. If we fix the policy to be this

‘‘null policy,’’ the process {xk, uk} becomes a Markov chain.

In the following part, we calculate the ‘‘r-step transition

probabilities’’ of this Markov chain, where r is a predefined

parameter representing sensing range.

Suppose ~P(r)
P (i, j) is the probability from state i to state j

in r steps without reaching any state in �SH

P under mnull. Here
~P(r)
P (i, u, j) can be calculated recursively. For all i, j, u and

m = 2,.,r,

~P(m)
P (i, j)=

X
x2~SP

~P(m�1)
P (i, x)~P(1)(x, j)

where

~P(1)(i, j)=

1, if i 2 �SH

P and i = j

0, if i 2 �SH

P and i 6¼ j
1
j ~UPj
P

u2 ~UP
~PP(i, u, j), otherwise

8<:
Here ~P(1)

P (i, j) is the one-step transition probability from

state i to state j under mnull. Define the safety score for state

i as

safe(i) :¼
X

j

~P(r)
P (i, j)I(j) ð10Þ

where I(j) is an indicator function such that I(i) = 1 if and

only if i 2 ~SP n �SH

P and I(i) = 0 otherwise. The safety score

of a state is the probability of hitting trap states �SH

P in the

following r steps under mnull. Thus, a higher safety score

for the current state implies that it is less likely to reach �SH

P
in the near future.

Compared with the safety score defined in Ding et al.

(2012), equation (10) is much more accurate. The safety

score in Ding et al. (2012) is the proportion of non-trap

states in the neighborhood of a state, which is problematic

in many cases. For example, for a state that has only one

trap state in its neighborhood but has a large transition

probability to this trap state, it will have a high safety score

according to Ding et al. (2012) despite the fact that it is

quite unsafe.

The desirability degree of an action u is defined as

a(u, i, u)= u1(
X

j

~PP(i, u, j)prog(j)� prog(i))

+ u2(
X

j

~PP(i, u, j)safe(j)� safe(i))
ð11Þ

which is a weighted sum of two contributing terms, and

u = (u1, u2) is the vector of corresponding weights. The

first term is based on the influence of this action on improv-

ing progress, and the second term is based on its influence

on improving safety.

Our RSP is constructed using the Boltzmann distribu-

tion. The probability of taking action u at state i is defined

as

mu(i, u)=
exp (a(u, i, u)=T )P

u2 ~UP
exp (a(u, i, u)=T )

ð12Þ

where T is the temperature of the Boltzmann distribution.

As a comparison, and to alleviate the influence of the

poor safety score we discussed earlier, the RSP in Ding

et al. (2012)‘‘looks multiple steps ahead,’’ i.e. considers all

possible sequences of actions in the several following steps.

Although such an RSP helps performance, its computation

cost is quite high. For a state that is visited multiple times,

the procedure of ‘‘looking multiple steps ahead’’ needs to

be performed at every visit. To address this problem, we

simplify the RSP structure and incorporate the ‘‘look

ahead’’ information into the safety score in (10), which can

be reused at every subsequent visit. Intuitively, the safety

score in (10) can be viewed as some information left in a

state by a ‘‘vanguard’’ robot that uses policy mnull and looks

r steps ahead at every state.

There is a well-known tradeoff between exploitation and

exploration in designing RSPs (Sutton and Barto, 1998). A

RSP will have higher exploitation if it is more greedy, i.e. it

is more likely to only pick the action with the highest desir-

ability degree. However, in each step, the exploration of

undesirable actions is necessary because they may be desir-

able in the long run. High exploitation and low exploration

may result in a sub-optimal solution. On the contrary, low

exploitation and high exploration may reduce the conver-

gence rate of the actor–critic algorithm. Based on the

Boltzmann distribution, our RSP defined in (12) is flexible

because tuning T in (12) can effectively adjust the degree of

exploration. High-temperature results in more exploration
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and vice versa. A large T also makes the RSP more random

while a small T makes the RSP more deterministic.

3.5. Overall algorithm

We now connect all of the pieces together and present the

overall algorithm giving a solution to Problem 2.4.

Proposition 3.14. For an LTL formula f, let R
f
u be the

satisfaction probability of RSP mu for f. For any given e,

Algorithm 2 returns a locally optimal uH such that

rRP
uH

��� ���� e.

Proof. Denote by Pf the product MDP for f. For any u

and RSP mu, let R
Pf

u be the reachability probability in

Problem 3.4 and �a(u) be the expected total cost in

Problem 3.10. Let uH be the outcome of Algorithm 1 for

Problem 3.10; then r�a(uH)
�� ��� e for a given e. In addi-

tion, we have �a(uH)= 1=R
Pf

uH � 1 according to Lemma

3.12 and R
f

uH = R
Pf

uH � 1 by definition. As a result,

rR
f

uH

��� ���� (Rf

uH)
2e� e. j

4. Simulation results

We test the algorithms proposed in this paper through simu-

lation in the RIDE environment (as shown in Figure 1).

The transition probabilities are computed by an accurate

simulator of RIDE as needed (cf. Section 4.2). We compare

the results of our actor–critic method with the results of the

method in Ding et al. (2011), which is referred to as the LP

method. We analyze the movements of robots under the

policy calculated by our actor–critic method in a 21× 21

scenario. We also analyze the increase of time and memory

usages of both methods when the problem size increases.

4.1. Environment

In this case study, we consider environments with topolo-

gies such as that shown in Figure 3. Such environments

are made of square blocks formed by corridors and inter-

sections. In the case shown in Figure 3, the corridors (C1,

C2, ., C164) are of one- or three-unit lengths. The three-

unit corridors are used to build corners in the environment.

The intersections (I1, I2, ., I84) are of two types, three-

way and four-way. The black regions in this figure repre-

sent the walls of the environment. Note that there is always

a corridor between two intersections. Thus, we can recur-

sively build larger scenes by concatenating smaller scenes

and merging the one-length corridors on the borders.

There are five properties of interest associated with the

regions of the environment. These properties are:

VD = ValuableData (regions containing valuable data to

be collected), RD = RegularData (regions containing regu-

lar data to be collected), Up = Upload (regions where data

can be uploaded), Ri = Risky (regions that could pose a

threat to the robot), and Un = Unsafe (regions that are

unsafe for the robot). If the robot reaches an unsafe state, it

Algorithm 2. Overall algorithm providing a solution to Problem 2.4.

Input: A labeled NTS MN = (Q, q0,U ,A,PN ,P, h) modeling a robot in a partitioned environment, LTL formula f over P, and a
simulator to compute P(q, u, �) given a state–action pair (q, u).

1: Translate the LTL formula f to a DRA Ru.

2: Generate the product NTS PN =MN ×Ru.

3: Find the union of all AMECs SH

P associated with PN .

4: Convert from a MRP to a SSP and generate ePN .

5: Obtain the RSP mu with ePN .

6: Execute Algorithm 1 with ePN and mu as inputs until r�a(uH)
�� ��� e for a uH and a given e.

Output: RSP mu and uH locally maximizing the probability of satisfying with respect to u up to a threshold e.

Fig. 3. An example schematic representation of an environment

with intersections and corridors. The black blocks represent

walls, and the white regions are intersection and corridors. There

are five properties of interest in the regions indicated with

VD = ValuableData, RD = RegularData, Up = Upload,

Ri = Risky, and Un = Unsafe. There are also some reset states in

the scene. Regions with properties of interests are plotted in

corresponding colors. The correspondence of properties and

colors are shown in the legend. A is a corridor with length one. In

our settings, corridors connected by two-way intersections form a

longer corridor. B marks an L-shape corridor formed by two 1-

block corridors that are connected by a two-way intersection. C

and D are examples of three- and four-way intersections. The

initial position of the robot is marked with a blue S.

1338 The International Journal of Robotics Research 34(10)



will break down and will not finish the task. There are also

some reset states in the scene. Whenever a robot reaches a

reset state, it will be removed from the scene. A mission

ends when the robot reaches a reset state, no matter whether

the task specification has already been met or not. Our goal

is to find a control strategy for the robot to maximize the

probability of finishing a task specified as an LTL formula

over the set of properties before the mission ends. Note that

while VD, RD, Up, Ri, and Un are properties that comprise

the LTL formula, reset states only trigger the end of a mis-

sion and should not appear in the LTL formula.

4.2. Construction of the MDP model

Let xk, yk be the position of the robot at time k. Denote by

vk and vk the speed and the heading of the robot, respec-

tively. Then the movement of the robot can be described

using the following unicycle model.

xk + 1 = xk + vk cos (vk)+ N (0,s2
x)

yk + 1 = yk + vk sin (vk)+ N (0,s2
y)

vk + 1 = vk + N (0,s2
v)

vk + 1 = vk + r(vd � vk)+ N (0,s2
v)

where vd is the desired heading, r is the angular feedback

coefficient, and sv determines the noise actuation noise.

Here sv affects the speed of the robot, while sx and sy char-

acterize the roughness of the surface in x and y directions,

respectively.

The robot is equipped with a set of feedback control pri-

mitives (actions): GoLeft, GoForward, GoRight, and

GoBackward. Due to the presence of noise in the actua-

tors and sensors, however, the resulting motion may be dif-

ferent than intended. Thus, the outcome of each control

primitive is characterized probabilistically.

To create a MDP model of the robot in RIDE, we define

each state of the MDP as a collection of two adjacent

regions (a corridor and an intersection). The first region in

the pair represents the last location of the robot, and the

second region in the pair represents the current location.

For instance, the pairs C1–I2 and I3–C4 are two states of the

MDP. If the robot is in C1–I2 at time k, then it is in intersec-

tion I2 at time k and was in corridor C1 at time k 2 1. If

the robot is in I3–C4 at time k, then it is in corridor C4 at

time k and was in intersection I3 at time k 2 1.

Through this pairing of regions, it was shown that the

Markov property (i.e. the result of an action at a state

depends only on the current state) can be achieved for the

motion of the robot in RIDE (Lahijanian et al., 2012). The

resulting MDP has 608 states. The set of actions available

at a state is the set of controllers available at the second

region corresponding to the state. For example, when in

state C1–I2 only those actions from region I2 are allowed.

Each state of the MDP whose second region satisfies a

property in P is mapped to that property.

To obtain accurate transition probabilities, we use the

unicycle model described earlier to simulate transition

probabilities of the labeled MDP. Note that each MDP state

is a tuple of two regions, the second one is the current

region and the first one is the previous region. To simulate

transition probabilities of an MDP state to its neighboring

states, we put the robot in the center of the second region

(current region), and the initial heading v1 is determined

by the relative position of the previous region and the cur-

rent region. A simulation ends if the robot moves out of the

current region to a new region. The new MDP state will

have the current region as the first element and the new

region as the second element. For each action available in

each MDP state, we performed a total of 1000 Monte Carlo

simulations, and use the normalized frequency as our esti-

mate of the transition probabilities. For example, for state

C1–I2 and action GoLeft, if the robot goes to C2, C3, C4

for 450, 200, 350 times, respectively, then under action

GoLeft, the transition probabilities from state C1–I2 to

state I2–C2, I2–C3, I2–C4 are 0.45, 0.2, 0.35, respectively.

4.3. Task specification and results

We consider the following mission, composed of three sub-

tasks (with no restriction on the order):

� reach a location with ValuableData (VD), then reach

Upload (Up);
� (repeat twice) reach a location with RegularData

(RD), then reach Upload (Up); with the following

requirements:
� always avoid Unsafe (Un) regions;
� do not reach Risky (Ri) regions unless directly preced-

ing a location with ValuableData (VD);
� after getting either ValuableData (VD) or RegularData

(RD), go to Upload (Up) before going for another

ValuableData (VD) or RegularData (RD).

The above task specification can be translated to the LTL

formula:

f:¼FVD ^ F (RD ^XFRD)

^G:Un

^G(Ri! XVD)

^G VD _ RD! X :(VD _ RD)UUPð Þð Þ

ð13Þ

Note that in (13), the first line corresponds to the mission

specification, and the rest correspond to the mission

requirements as stated above.

We now show results of applying our algorithm for two

scenarios, a 21× 21 grid and a large 81× 81 grid. We use

the computational frameworks described in this paper to

find the control strategy maximizing the probabilities of

satisfying the specification. For the 21× 21 grid, we visua-

lize a movement of the robot under the policy calculated by

our actor–critic method and verify that all task
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specifications are satisfied. We also evaluate the time and

memory usage of our algorithm with the LP method in the

21× 21 grid and the 81× 81 grid, respectively. Compared

with the LP method, our algorithm uses much less time

and memory for the 81× 81 grid scenario.

4.3.1. Results of a 21× 21 grid scenario. In this scenario,

we use the scene settings described in Section 4.1.

Figure 4(a) plots the properties of the states in the 21× 21

grid using different colors (the legend shows the correspon-

dence of the properties and the colors). Figure 4 also shows

an example trace, i.e. a sequence of MDP states generated

by the actor–critic algorithm, to verify that the robot motion

is indeed correct and satisfies the mission specification and

requirements. For convenience of visualization, we divide

the example trace into five segments, each segment verify-

ing a subtask in our LTL formula. In Figure 4(b)–(f), paths

of the robot are plotted as blue lines, and the turning direc-

tions of the robot are plotted as arrows. The transparency

of the arrows are associated with the timestamps of the

turns. Turns with smaller timestamps are plotted more

transparently while turns with larger timestamps are plotted

less transparently. We map each MDP state to the current

region of the robot. For example, the MDP state R1–I3 cor-

responds to region I3 in the scene. The robot first moves

from starting point to pick up the valuable data (VD) after

crossing the Risky (Ri) state (Figure 4(b)). After that, the

robot uploads (Up) the valuable data (Figure 4(c)). Later,

the robot picks up the first regular data (RD) (Figure 4(d))

and uploads (Up) the first regular data (Figure 4(e)). The

robot eventually picks up and uploads the second regular

data (Figure 4(f)).

In this case, the product MDP contains 22,533 states.

There are 1085 ‘‘goal’’ states and 10,582 ‘‘trap’’ states as

defined in Definition 3.9. Note that in order to solve the

probability exactly using the LP method, we need to com-

pute transition probabilities for all 90,132 state–action

pairs. In our method, we only compute the transition prob-

abilities along the sample path, which only consists of a

very small portion of the state space. By caching the transi-

tion probabilities of previous visited states, we can further-

more reduce the computation cost for generating transition

probabilities. We observe that less than 7000 transition

probabilities are needed during the simulation of the actor–

critic algorithm.

The result of the LP method is a deterministic solution,

which has been proved to be the exact optimal solution over

Fig. 4. (a) Schematics of the 21× 21 grid. An example trace: (b) the robot moves from the start point and obtains valuable data (VD)

after crossing the Risky (Ri) state; (c) the robot uploads (Up) the valuable data; (d) the robot picks up the first regular data (RD); (e)

the robot uploads (Up) the first regular data; (f) the robot picks up and uploads the second regular data.
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all policies. The satisfaction probability is 100%. Our

actor–critic algorithm optimizes u over a set of parameter-

ized RSPs to a local optimal solution. Note that u = (u1, u2)

is a vector of parameters, where u1 and u2 are the weights

for progress and safety, respectively (cf. 11). If we assume

some range for these weights, we can discretize them (e.g.

by dividing their range into equal bins) and thus assume

that u takes values in a discrete set. We could use a brute

force method to calculate the optimal solution within all

possible values of the discretized u, which is referred to as

RSP optimal solution. When discretization is fine enough,

we could treat the result of the brute force method as the

global optimal solution within the set of parameterized

RSPs. In our case, we choose the difference of two consec-

utive discretized values for both u1 and u2 to be 0.01. The

RSP optimal solution for the 21× 21 grid scenario has 98%

probability of satisfying the specification.

The difference between the exact optimal solution and

the RSP optimal solution characterizes the expressivity of

the RSP structure we used. The difference of the result of

the actor–critic algorithm and the RSP optimal solution

characterizes the effectiveness of the actor–critic algorithm

in terms of optimizing the RSP.

The graph of the convergence of the actor–critic solu-

tion is shown in Figure 5. The parameters for this examples

are: l = 0.9, and initial u = (2.85, 100). The sensing radius

r in the RSP is 2. The actor–critic algorithm converges

after 20,000 iterations to an 85% reachability probability.

Its difference to exact and RSP optimal solutions is 15%

and 13%, respectively.

4.3.2. Results of a 81× 81 grid scenario. The 81× 81

grid is shown in Figure 6. The grid is created by concate-

nating 16 smaller 21× 21 grids and merging the borders

between the adjacent small grids. The states with properties

are generated randomly. In this scenario, the product MDP

contains 359,973 states. There are 19,135 ‘‘goal’’ states and

166,128 ‘‘trap’’ states as defined in Definition 3.9. By

applying the LP method, we calculate the exact optimal

solution and found a maximum satisfaction probability of

99%. The RSP optimal solution leads to satisfaction prob-

ability of 92%.

The initial u = (1, 110). The sensing radius r in the RSP

is 2. The graph of the convergence of the actor–critic solu-

tion is shown in Figure 7. The actor–critic algorithm con-

verges to 80% after 68,000 iterations. Its difference to exact

and RSP optimal solutions is 19% and 12%, respectively.

In Problem 3.10, the period cost is zero unless the states

reaches �S�P , in which case the cost is 1. As a result, when
�S�P is reached, the algorithm will receive a strong penalty

(bad feedback) for the current policy and make a signifi-

cant policy update, which results in the jumps of reachabil-

ity probabilities seen in Figure 7.

Finally, in order to demonstrate the usefulness of our

approach, in Table 1 we compare the computation time and

Fig. 5. Reachability probability for the RSP as a function of the

number of iterations applying the proposed algorithm. The exact

solution (maximum probability of satisfying the specification) is

1. The RSP optimal solution is 0.98.

Fig. 6. Schematics of the 81× 81 grid. The states with

properties are plotted using corresponding color (see the legend

for the correspondence of properties and colors).

Fig. 7. Reachability probability for the RSP as a function of the

number of iterations for the large environment. The exact

solution (maximal probability of satisfying the specification) is

0.99. The RSP optimal solution is 0.92.
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memory needed to execute our algorithm versus using the

CPLEX LP solver. Both algorithms are run on a machine

with 2.50 GHz 4-core Intel i5 CPU and 2 GB memory.

Note that the time in the table does not include the time of

calculating AMECs. For the 21× 21 grid, the LP method

is faster. The actor–critic algorithm needs considerable

number of iterations to learn the correct parameters, even if

the problem size is small, which makes it unfavorable for

small problems. However, the time required for the LP

method increases rapidly when the problem size increases,

while the time for the actor–critic method only increases

modestly. In the 81× 81 grid, the LP method takes about 2

times more CPU time than our algorithm. The actor–critic

method also uses much less memory than the LP method

in both scenarios because only a small percentage of transi-

tion probabilities needs to be stored. For the 21× 21 grid,

this percentage is only around 7.6%. Although the actor–

critic algorithm also needs to store some additional infor-

mation (progress and safety scores), the overall memory

usage remains substantially smaller. The LP method uses

15 times more memory in the 81× 81 scenario than in the

21× 21 scenario. At the same time, the memory usage of

our method only increases by four times. These results

show that the compared with the LP method, the actor–

critic method is suitable for large-scale problems because

of its reduced time and space complexity.

5. Conclusions and future work

We have presented a framework that brings together an

approximate dynamic programming computational method

of the actor–critic type, with formal control synthesis for

MDPs from temporal logic specifications. We have shown

that this approach is particularly suitable for problems

where the transition probabilities of the MDP are difficult

or computationally expensive to compute, such as for many

robotic applications. We have demonstrated that this

approach effectively finds an approximate optimal policy

within a class of randomized stationary polices maximizing

the probability of satisfying the temporal logic formula.

Because our experiment setup is based on the RIDE plat-

form, the results in this paper only focus on maze-like

environments. However, the techniques presented in this

paper, including the conversion from MRP to SSP and the

LSTD actor–critic algorithm, are general and should work

beyond RIDE as long as a labeled MDP can be properly

defined in the environment. Future work can evaluate our

approach in more realistic environments such as city roads.

Another interesting direction to pursue would be to extend

our approach to multi-robot teams.
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Appendix: Convergence of the LSTD

actor–critic algorithm

We first cite the theory of linear stochastic approximation

driven by a slowly varying Markov chain (Konda, 2002)

(with simplifications).

Let {yk} be a finite Markov chain whose transition prob-

abilities pu(�j�) depend on a parameter u 2 R
n. Consider a

generic iteration of the form

sk + 1 = sk + gk(huk
(yk + 1)�Guk

(yk + 1)sk)+ gkXksk ð14Þ

where sk 2 R
m, and hu( � ) 2 R

m,Gu( � ) 2 R
m×m are

u-parameterized vector and matrix functions, respectively.

We first present the following conditions.

Conditions 5.1. (1) The sequence {gk} is deterministic,

non-increasing, andX
k

gk = ‘,
X

k

g2
k\‘

(2) The random sequence {uk} satisfies kuk + 1 2 ukk
� bkHk for some process {Hk} with bounded moments,

where {bk} is a deterministic sequence such that

X
k

bk

gk

� 	d

\‘ for some d.0

(3) Nk is an m×m-matrix valued martingale difference

with bounded moments.

(4) For each u, there exist h(u) 2 R
m, G(u) 2 R

m×m,

and corresponding m-vector and m×m-matrix functionsbhu( � ), bGu( � ) that satisfy the Poisson equation. That is, for

each y,

bhu(y)= hu(y)� h(u)+
X
z

pu(zjy)bhu(z)

bGu(y)=Gu(y)�G(u)+
X
z

pu(zjy)bGu(z)

Denote by Eu[�] the expectation with respect to the station-

ary distribution of the finite Markov chain {yk}, then

G(uk)= Eu½Guk
(y)	 and h(uk)= Eu½hu(y)	.

(5) For some constant C and for all u, we have

max ( h(u)
�� ��, G(u)

�� ��)�C:
(6) For any d . 0, there exists Cd . 0 such that

supk E fuk
(yk)k kd

h i
�Cd , , where fu(�) represents any of

the functions bhu( � ), hu(�), bGu( � ) and Gu(�).
(7) For some constant C . 0 and for all u, u 2 R

n,

max h(u)� h(u)
�� ��, G(u)�G(u)

�� ��� �
�C u� u

�� ��.
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(8) There exists a positive measurable function C(�) such

that for every d . 0, supkE[C(yk)
d] \ N, and

fu(y)� fu(y)
�� ���C(y) u� u

�� ��.

(9) There exists a . 0 such that for all s 2 R
m and

u 2 R
n

s0G(u)s � a sk k2

It has been shown in Konda (2002) that the critic in (14)

converges if Conditions 5.1(1)–(9) are met.

Theorem 5.2. [Convergence of linear stochastic approxi-

mation] If Conditions 5.1(1)–(9) are satisfied, then

lim
k!‘
jG(uk)sk � h(uk)j= 0 ð15Þ

Proof. See Chapter 3 of Konda (2002).

Based on Theorem 5.2, we present the convergence of

the critic in Algorithm 1 in the following theorem.

Theorem 5.3. [Critic convergence] For the LSTD actor–

critic method described in Algorithm 1 with some determi-

nistic and non-increasing step-size sequences {bk}, {gk}

satisfying (8), the sequence sk is bounded, and

lim
k!‘
jbk � Eu½g(x, u)z)	j= 0

lim
k!‘
jv(Ak)� Eu½v z((Puc0u)(x, u)� c0u(x, u))

� �
	j= 0

where Eu[�] is the expectation with respect to the stationary

distribution of the Markov chain {xk, uk, zk}, and for any

matrix A, v(A) is a column vector that stacks all row vec-

tors of A (also written as column vectors).

Proof. Simple algebra suggests that the critic update in

Algorithm 1 can be written in the form of (14) with

sk =
bk

v(Ak)
1

24 35, yk = (xk , uk , zk)

hu(y)=
g(x, u)z

v(z((Puc0u)(x, u)� c0u(x, u)))
1

24 35
Gu(y)= I½ 	

Nk =
0 0 0

0 0 Dk

0 0 0

24 35
ð16Þ

where Ak, bk, xk, uk, and zk are the iterates defined in

Algorithm 1, y = (x, u, z) denotes a value of the triplet yk,

and Dk = v(zk(c
0
uk
(xk + 1, uk + 1)� (Pucu)

0(xk , uk))).
The step-sizes gk and bk in Algorithm 1 correspond

exactly to the gk and bk in Conditions 5.1(1) and (2),

respectively. For MDPs with finite state and action space,

Conditions 5.1(1) and (2) reduces to (8).

A direct yet verbose way to prove the theorem is to ver-

ify Conditions 5.1(3)–(9). However, a comparison with the

convergence proof for the TD(l) critic in Konda and

Tsitsiklis (2003) gives a simpler proof. Let

Fu(y)= z(c0u(x, u)� (Pucu)
0(x, u))

While proving the convergence of TD(l) critic operating

concurrently with the actor, Konda and Tsitsiklis (2003)

showed that

ehu(y)=
~h(1)

u (y)eh(2)u (y)

" #
=

Mg(x, u)
g(x, u)z


 �
ð17Þ

eGu(y)=
1 0

z=M Fu(y)


 �
ð18Þ

and

eNk =
0 0

0 v zk(c
0
uk
(xk + 1, uk + 1)� (Pucu)

0(xk , uk))
� 

 �

ð19Þ

satisfy Conditions 5.1(3)–(8). Then M in (17) and (18) is

an arbitrary (large) positive constant whose role is to facili-

tate the convergence proof. In our case, equation (16) can

be rewritten as

hu(y)=

eh(2)u (y)
v Fu(y)ð Þ

1

24 35, Gu(y)= I½ 	, Nk =
eNk

0


 �
ð20Þ

Note that although hu(y), Gu(y), and Nk in (20) are very

different from ehu(y), eGu(y), and eNk in (17), (18) and (19),

they involve the same quantities and both in a linear

fashion. So, hu(�),Gu(�) and Nk also satisfy Conditions

5.1(3)–(8). Meanwhile, the step-size {gk} satisfies

Condition 5.1(1), and the step-size {bk} satisfies (8) (which

is as explained above implies Condition 5.1(2)). Now, only

Condition 5.1(9) remains to be checked. Here Gu(y) is the

identity matrix, hence positive definite. Since all conditions

are satisfied, equation (15) holds here. The theorem can be

proved by substituting (16) to (15) and using the fact that

G(uk)= Eu½Guk
(y)	 and h(uk)= Eu½hu(y)	. j

Theorem 5.3 states that the critic step in Algorithm 1

can converge to the optimal r. In addition, note that l in

Step 6 of Algorithm 1 is a decay factor used in Sutton’s

eligibility trace, and has been applied in other approximate

dynamic programming methods such as TD(l) (Sutton and

Barto, 1998). Then the following theorem establishes the

convergence for the actor step of Algorithm 1.

Proof of Theorem 3.13

Proof. Compared with Konda and Tsitsiklis (2003), the

actor update is the same and we only change the critic

update. The convergence of the critic update is established

in Theorem 5.3. The theorem can be proved by setting

fu = cu and following the proof in Section 6 of Konda

and Tsitsiklis (2003). j
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