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ABSTRACT
We consider a case study of the problem of deploying an
autonomous air vehicle in a partially observable, dynamic,
indoor environment from a specification given as a linear
temporal logic (LTL) formula over regions of interest. We
model the motion and sensing capabilities of the vehicle as
a partially observable Markov decision process (POMDP).
We adapt recent results for solving POMDPs with parity
objectives to generate a control policy. We also extend the
existing framework with a policy minimization technique to
obtain a better implementable policy, while preserving its
correctness. The proposed techniques are illustrated in an
experimental setup involving an autonomous quadrotor per-
forming surveillance in a dynamic environment.

1. INTRODUCTION
Accounting for uncertainty is a challenging problem in

robot motion planning [19]. Partially observable Markov de-
cision processes (POMDPs) [11] are widespread models that
capture the uncertainties inherent in a robot’s actuators and
sensors. While solving large POMDPs is a particularly dif-
ficult problem, significant progress has been made recently
in computing approximate solutions using point-based al-
gorithms [12, 18, 17, 10, 16]. Such techniques have been
successfully applied to several moderately complex robotic
tasks, including navigation [14, 3], grasping [7], target track-
ing [12, 8], and exploration [17]. In some cases, POMDPs
with hundreds of states have been solved in a matter of sec-
onds (see, e.g., [17, 8]). In these works, the mission usually
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requires to move a robot from an initial to a final location
in finite time, while minimizing a cost. Several applications,
however, require the accomplishment of more complex mis-
sions, possibly over infinite time horizons. For example, in
a persistent surveillance mission, an autonomous aircraft
might be required to “keep on collecting data from region
A and uploading it in region B while always avoiding region
C.”. Such specifications translate naturally to formulas of
temporal logics, such as Linear Temporal Logic [6].
In this work, we focus on the case study of the prob-

lem of deploying an autonomous air vehicle in a partially
observable, dynamic, indoor environment from a specifica-
tion given as a linear temporal logic (LTL) formula. Every
temporal logic property can be translated to a determinis-
tic parity automaton [15, 13] that defines a parity objective
on the POMDP. POMDPs with parity objectives are, there-
fore, quite general models for motion planning. We consider
the qualitative analysis problem, i.e., the problem whether
there exists a control policy that satisfies the property with
probability 1 (almost-surely). The almost-sure satisfaction
of the property provides the strongest probabilistic guaran-
tee, which is also robust with respect to modeling errors.
The almost-sure analysis of POMDPs with parity objec-

tives was shown to be undecidable in [1]. Recently, in [5], it
was shown that when restricted to the practical case of finite-
memory policies, the problem becomes decidable. In [4], the
authors introduce a number of heuristics to deal with the
exponential complexity of the problem and implement an
algorithm for qualitative analysis of POMDPs under finite-
memory policies. Whenever there exists an almost-sure win-
ning policy, the algorithm also outputs a witness policy.
In this paper, we build on the results from [5, 4] to de-

velop e�cient algorithms to solve POMDPs corresponding
to a class of robotic applications. The contribution of this
case-study paper is threefold. First, we show how POMDP
models can be constructed for a class of experimental robotic
problems. Second, we show that policies constructed us-
ing [5, 4] can be minimized to obtain smaller, possibly easier
to implement policies, while preserving their correctness. Fi-
nally, the proposed techniques are illustrated using computer
simulation as well as experiments using a robotic testbed.
The rest of the paper is organized as follows. We describe

the case study in Sec. 2. In Sec. 3, we introduce POMDPs
with parity objectives, summarize the existing technical ap-
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Figure 1: Case study of a quadrotor and a ground
agent moving in a shared partitioned environment.
The quadrotor is equipped with a camera with a
restricted field of view, for the current region r2,2
shown in blue. The quadrotor’s objective is to sur-
vey regions A = r1,1 and B = r5,5, in green, while
avoiding the ground agent, currently in region r2,3.

proach and present our new technical result of policy min-
imization. Finally, in Sec. 4, we build the POMDP model
for the case study, synthesize corresponding policies, and
demonstrate their performance using simulations and exper-
iments on a real platform.

2. PROBLEM FORMULATION
We consider a quadrotor and a ground agent moving syn-

chronously and independently in a shared environment. The
environment is discretized into a grid of m by n equally sized
square regions (a 5 by 5 grid is depicted in Fig. 1). The
objective for the quadrotor is to survey regions A and B,
shown in green in Fig. 1, while avoiding the ground agent,
i.e., never enter a configuration, where the quadrotor hovers
above the ground agent in the same region of the grid. The
quadrotor is equipped with a downward facing camera with
a restricted field of view (FOV) of u by v regions, e.g., the
case of 3 by 3 field of view in quadrotor’s current position
in Fig. 1 is shown in blue. We consider three scenarios that
di↵er in the image processing for the camera output and as-
sumptions on the ground agent’s motion. We synthesize a
(finite-memory) policy for the quadrotor that satisfies the
objective with probability 1 (almost-surely).
In this section, we describe the components of the setup

and summarize the scenarios. We consider a 5 by 5 grid
with a 3 by 3 FOV for the camera, as in Fig. 1. To illustrate
scalability, we discuss larger environments in Sec. 4.

2.1 Components of the model
Environment. The environment is discretized into a 5 by 5
grid, where regions in the grid are R = {r

i,j

| 1  i, j  5},
i.e., r

i,j

refers to the region in the i-th row and j-th column
(r1,1 is the bottom left corner) of the grid as in Fig. 1.

Quadrotor. The quadrotor can move in the grid from its
current region to any adjacent region in the grid or hover
over the current region. The motion of the quadrotor is
modeled by a set of actions A = {N, S,E,W,X}. The first
four actions correspond to the movement in the four com-
pass directions and action X corresponds to hovering over
the current region. The e↵ects of all the actions are de-
terministic and correspond to the movement in the desired
direction, i.e., applying action E in region r1,1 moves the
quadrotor to region r1,2. We assume that the quadrotor is
initially positioned over region r1,1.

Ground agent. The ground agent moves probabilistically
in the grid. Just like the quadrotor, the ground agent is
capable of moving from its current region to neighboring
ones or to remain in the same region. We consider two
particular motion models for this agent.

SW

Det

NW NE

SE SE

NW

W

SW S

N NE

Det E

CamQuad CamPerf

Figure 2: The two camera models and the names
of observations transmitted from the camera to the
quadrotor, if the ground agent is present in given
parts of the FOV. In CamQuad, the captured image
is divided into quadrants. In CamPerf , the image is
divided into a grid of 9 cells.

Unrestricted ground agent. In the first, unrestricted mo-
tion model GA

u

, we assume that the agent moves randomly
across the whole grid, i.e., the ground agent is initially po-
sitioned uniformly at random among the regions of the grid
that are out of the quadrotor’s FOV. The next visited re-
gion is sampled at random uniformly over the possible next
regions. For example, from region r2,1, the agent moves to
any of the regions r3,1, r2,2, r1,1, r2,1 with probability 1/4.

Restricted ground agent. In the second motion model GA
r

,
we assume that the ground agent moves randomly in the
grid but can never enter the corner regions of the grid, i.e.,
regions r1,1, r5,1, r5,5, r1,5. As in the first case, the ground
agent is initially positioned in a region chosen uniformly at
random from regions outside of the quadrotors’ FOV that
are not corner regions. The transition probability distri-
bution in every region is the uniform distribution over the
possible next regions, e.g., from region r2,1, the agent moves
to any of the regions r3,1, r2,2, r2,1 with probability 1/3.

Camera. The downward facing camera mounted on the
quadrotor provides feedback about the relative position of
the ground agent. We consider two di↵erent image process-
ing mechanisms for the camera.

Quadrant camera. In the first case CamQuad, the image cap-
tured by the camera is divided into quadrants as depicted in
Fig. 2, i.e., the camera is not able to determine in which
region of the grid the ground agent currently is, it only
determines its relative position to the current position of
the quadrotor. The set of observations transmitted to the
quadrotor is ObsQuad = {SW,NW,NE, SE,Det,None}, where
the first four observations correspond to the ground agent
being in the respective quadrant, Det stands for the agent
being directly below the quadrotor, and None refers to the
agent being out of the FOV. If the ground agent is out of
FOV, the observation is None with probability 1. If the agent
is in the FOV and in a region that intersects only one of the
four quadrants, the observation is the corresponding quad-
rant with probability 1, e.g., if the quadrotor is in region r1,1
and the ground agent in r2,2 the observation transmitted to
the quadrotor is NE with probability 1. Finally, if the agent
is in the FOV and in a region that intersects two of the four
quadrants, the camera can report as the current observation
any of the two quadrants, each with probability 1/2, e.g., if
the quadrotor is in region r1,1 and the ground agent in r2,1
the observation transmitted to the quadrotor can be NW or
NE each with probability 1/2.

Perfect camera. The second image processing mecha-
nism CamPerf divides the captured image into a grid of 9
equally sized cells as shown in Fig. 2. Together with
the fact that the image captures up to 9 regions of the
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grid, this version of the camera allows for perfect recog-
nition of the ground agent’s position in FOV. The set
of observations transmitted to the quadrotor is ObsPerf =
{S,N,W,E, SW,NW,NE, SE,Det,None} that correspond to
the relative position of the ground agent. The position of
the ground agent is detected correctly with probability 1,
e.g., if the quadrotor is in region r1,1 and the ground agent
in r2,1, the observation is N with probability 1. The ob-
servations Det and None have the same meaning as in the
case of the CamQuad camera. For example, if the quadrotor
is in region r1,1 and the ground agent in r2,1 the observation
transmitted to the quadrotor is N with probability 1.

Scenarios. In this work, we consider the following three
scenarios that arise from combinations of the above models.
Scenario 1

Considers the unrestricted motion model GA
u

for the
ground agent and the quadrant camera model CamQuad.

Scenario 2
Replaces the ground agent motion model with the re-
stricted variant GA

r

, and consider the quadrant cam-
era CamQuad.

Scenario 3
Considers the unrestricted motion model GA

u

for the
ground agent and the perfect camera CamPerf .

3. TECHNICAL APPROACH
In this section we introduce POMDPs and describe how a

finite-state policy can be synthesized by the algorithm pre-
sented in [4]. We also present a new technical contribution,
which is a new approach to minimize finite-memory almost-
sure winning policies in POMDPs with parity objectives.

3.1 POMDPs and Parity Objectives
A probability distribution f on a finite set X is a function

f : X ! [0, 1] such that
P

x2X

f(x) = 1, and we denote
by D(X) the set of all probability distributions on X. For
f 2 D(X), we use Supp(f) = {x 2 X | f(x) > 0} to denote
the support of f . For probability distributions f and f 0 we
will write f ⇠= f 0 i↵ Supp(f) = Supp(f 0).

POMDPs. A discrete-time partially observable Markov de-
cision process (POMDP) is a tuple M = (S,A, �, Obs,⇧, µ),
where (i) S is a finite set of states; (ii) A is a finite alphabet
of actions; (iii) � : S ⇥ A ! D(S) is a probabilistic tran-
sition function that given a state s and an action a 2 A
gives the probability distribution over the successor states,
i.e., �(s, a)(s0) denotes the transition probability from state
s to state s0 given action a; (iv) Obs is a finite set of obser-
vations; (v) ⇧ : S ! D(Obs) is a probabilistic observation
function that maps every state to a distribution over the
observations; and (vi) µ is the initial state distribution. We
assume there is a finite set of atomic propositions AP , and
a function L : S ! 2AP that labels a state s of the POMDP
with a set of atomic proposition true at state s.

Plays and belief-supports. A play in a POMDP is an
infinite sequence of states and actions (s0, a0, s1, a1, . . .)
such that for all i � 0, we have �(s

i

, a
i

)(s
i+1) > 0.

We write ⌦ for the set of all plays. For a finite prefix
w 2 (S ·A)⇤ · S of a play, we use Last(w) to denote the last
state of w. For a finite prefix w = (s0, a0, s1, a1, . . . , sn),
we denote by ⇧(w) = (⇧(s0), a0,⇧(s1), a1, . . . ,⇧(s

n

)) the
observation and action sequence associated with w. For a
finite sequence ⇢ = (z0, a0, z1, a1, . . . , zn) of observations
and actions, the belief-support B(⇢) after the prefix ⇢
is the set of states in which a finite prefix of a play is

with positive probability after the sequence ⇢ of obser-
vations and actions, i.e., B(⇢) = {s

n

= Last(w) | w =
(s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for all 0 
i  n. ⇧(s

i

) = z
i

}.
Policies with memory and finite-memory policies. A
policy with memory is a tuple � = (�

u

,�
n

,M,m0), where
(i) M is a denumerable set (finite or infinite) of mem-
ory elements (or memory states); (ii) �

n

: M ! D(A) is
the next action selection function that given the current
memory state gives the probability distribution over actions;
(iii) �

u

: M ⇥ Obs ⇥ A ! D(M) is the memory update
function that given the current memory state, the current
observation and action, updates the memory state proba-
bilistically; and (iv) m0 2 M is the initial memory state. A
policy is a finite-memory policy if the set M of memory ele-
ments is finite. A policy is memoryless if the set of memory
elements M contains a single memory element.

Objectives. An objective specifies the desired set ' ✓ ⌦
of plays (or behaviors) in a POMDP. A common approach
to specify objectives is using LTL formulas [6]. They can
express all commonly used specifications in practice in a
way that resembles natural language. We use the graphical
notation for LTL temporal operators, i.e., eventually (⌃ ),
always (⇤ ), next (� ) and until (U ).
In this work, we consider POMDPs with parity objectives,

since every LTL formula can be translated to a determin-
istic parity automaton [15, 13]. Given a POMDP, an LTL
formula, and an equivalent deterministic parity automaton
for the formula, the synchronous product of the POMDP
and the automaton is a POMDP with a parity objective.
Formally, a parity objective ' is given by a priority function
p
'

: S ! N that associates every state of the POMDP with
a non-negative priority. A play ⇢ = (s0, a0, s1, a1, s2, a2, . . .)
is then called winning with respect to the given parity ob-
jective if the minimum priority appearing infinitely often in
the play is even.

Qualitative analysis. Given a policy � for a POMDP, let
P�

s0
(·) denote the unique probability measure obtained by

fixing the policy in the POMDP [20]. A policy � is almost-
sure winning for a parity objective ', if P�

s0
(') = 1. The

qualitative analysis problem given a POMDP and a parity
objective asks for an almost-sure winning policy.

3.2 Policy Synthesis and Minimization.
Policy synthesis. The algorithm presented in [4] decides
whether there exists a finite-memory policy that satisfies a
given a parity objective with probability 1. The algorithm
first reduces the input POMDP to a polynomially larger
POMDP with a parity objective with only two priorities.
In the next step an exponential POMDP is constructed in
which memoryless policies are su�cient. Finally, a mem-
oryless policy in the final POMDP is translated back to a
finite-memory policy in the input POMDP. The main pur-
pose of the algorithm from [4] is to decide whether there
exists an almost-sure winning policy. As a side e↵ect of
the computation it outputs an almost-sure winning policy
� = (�

u

,�
n

,M,m0). However, the policy can contain many
redundant memory elements.

Policy minimization. One important aspect for e�cient
policies is to minimize the policy to obtain smaller policies.
In this paper, we present a new approach to minimize poli-
cies that takes advantage of the following property of win-
ning policies on POMDPs. Let � = (�

u

,�
n

,M,m0) be a
finite-memory almost-sure winning policy. It holds that by
replacing any distribution f assigned by one of the functions
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�
u

or �
n

by a di↵erent distribution f 0 such that f ⇠= f 0,
the new modified policy remains almost-sure winning [5]. In
other words, policy � is robust with respect to perturbations
of its probability distributions. It follows, that one can view
the policy � as a nondeterministic finite-state automaton
(NFA), where the states are the memory elements M , the
initial state is m0, the alphabet is the product Obs ⇥ A,
and the transition relation from state m and action (z, a)
is �(m, (z, a)) = Supp(�

u

(m, z, a)). As NFA minimization
is PSPACE-complete [9], the standard approach to obtain
smaller NFAs is to compute a quotient NFA [2], where two
states m and m0 belong to the same quotient if the two
states are bisimilar, i.e., m ⇠ m0. As there are no final
memory elements in policies, we need to define a new initial
equivalence relation ⇠0 on the states, that is then further
refined. Every memory element of the policy � returned by
the algorithm contains as one of its components the current
belief-support. For memory elements m and m0, we define
m ⇠0 m0 if the memory elements agree on the belief-support
component. Using the standard algorithm for the computa-
tion of the bisimulation equivalence, the initial relation ⇠0

is refined until a fixpoint ⇠ is reached, as in the case of the
algorithm computing the quotient NFA [2]. The quotient
NFA is translated back to an almost-sure winning policy.

4. RESULTS
In this section, we show how the considered scenarios can

be modeled with POMDPs and formalize the quadrotor’s
objective using an LTL formula. In the next step, we ap-
ply the tool introduced in [4] with the policy minimization
technique designed in Sec. 3.2 to solve the POMDPs. The
constructed policies are intuitively interpreted over the cor-
responding scenarios. We also discuss the scalability of the
approach over larger grids. Finally, we analyze and demon-
strate the obtained policies using simulation in Matlab and
in a robotic testbed.

4.1 POMDP models
Given a scenario, we construct a POMDP M that cap-

tures the interaction of all components. Here we describe
the POMDP for the first scenario and discuss the modifi-
cations needed for the other two scenarios. The POMDP
M1 = (S,A, �, Obs,⇧, µ) is built as follows. The set of
states S = R ⇥ R [ {Out} consists of pairs, where the
components correspond to the current region of the quadro-
tor and the ground agent, respectively. The newly intro-
duced state Out corresponds to the area outside of the
grid. The set of actions are the actions available to the
quadrotor, i.e., A = {N,E, S,W,X}. The transition rela-
tion combines the movement of the quadrotor and the mo-
tion model of the ground agent GA

u

, e.g., the probability
�((r

i,j

, r
x,y

),E)(r
i

0
,j

0 , r
x

0
,y

0) is the probability of the ground
agent moving from region r

x,y

to region r
x

0
,y

0 , while the
quadrotor moves east from region r

i,j

is r
i

0
,j

0 . Attempts of
the quadrotor to move out of the grid lead with probabil-
ity 1 to the newly introduced absorbing state Out. The set
of observations Obs = ObsQuad[{oOut} is given by the obser-
vations transmitted from the camera and an additional ob-
servation for state Out. The observation function ⇧ is then
directly given by the camera, e.g., ⇧(r1,1, r2,1)(NW) = 0.5
and ⇧(r1,1, r2,1)(NE) = 0.5. For the state Out, we let
⇧(Out)(oOut) = 1. The initial state is sampled from the
states, where the quadrotor’s component is r1,1.
The POMDPmodelsM2 andM3 for the second and third

scenario, respectively, are constructed analogously. Namely,
M2 di↵ers from M1 in the transition function that reflects

the allowed movement of the ground agent, and M3 di↵ers
from M1 in the observation set and the observation function
in order to correspond to the perfect camera CamPerf .

Objective. We consider a set of atomic propositions
AP = {Detected, A,B}. The labeling function L is de-
fined over the set of states S of the POMDP as follows.
For a state (r

i,j

, r
x,y

) 2 S, we let Detected 2 L((r
i,j

, r
x,y

))
if and only if the quadrotor and the ground agent are in
the same region of the grid, i.e., i = x and j = y. As ex-
pected, A 2 L((r

i,j

, r
x,y

)) for i = j = 1, and analogously,
B 2 L((r

i,j

, r
x,y

)) for i = j = 5.
Recall that the objective for the quadrotor is to survey

regions labeled with A and B, while avoiding the ground
agent. The corresponding LTL formula over AP is

⇤⌃A ^ ⇤⌃B ^ ⇤¬Detected.

The formula is translated to a deterministic parity automa-
ton with 4 states and the synchronous product POMDP is
constructed. Next, we present a crucial heuristic that makes
qualitative analysis in all our examples feasible.

State space reduction. Intuitively, the algorithm in [4]
that is used here to solve the parity POMDP problem, keeps
track of the possible current regions of the ground agent, i.e.,
keeps track of the current belief-support. For every possible
belief-support, the algorithm implemented in [4] performs
a computation that is exponential in the size of the belief-
support. This becomes particularly time-consuming, when
the ground agent is out of FOV of the camera. Consider
for example the following case. Assume that the quadrotor
hovers over region r1,1 and the observation None is reported
for 7 consecutive turns. It follows that the ground agent
can be in any of the 21 regions outside of FOV, i.e., the
size of the belief-support is 21. To avoid the computational
overhead, we implement the following heuristic. We mod-
ify the POMDP M1 so that we do not need to keep track
of the ground agent whenever it is out of FOV. More for-
mally, we construct a POMDP M1, where for every region
of the quadrotor r

i,j

, we merge all the states (r
i,j

, r
x,y

) for
which the ground agents’ region r

x,y

is out of the FOV of the
camera. Clearly, the ground agent in POMDP M1 is more
powerful than the ground agent in POMDP M1, as it can
move arbitrarily among regions outside of the current FOV.
However, the construction guarantees that any almost-sure
winning policy in POMDP M1 is also an almost-sure win-
ning policy in POMDP M1.

4.2 Generated policies
To synthesize a finite-memory policy for the three consid-

ered scenarios, we used the implementation of [4] with the
policy minimization technique designed in Sec. 3.2.

Scenario 1. In the scenario with an unrestricted ground
agent GA

u

and a quadrant camera CamQuad, there does not
exist a finite-memory policy for the quadrotor that would
satisfy the objective with probability 1. Intuitively, in non-
corner regions of the grid, the quadrotor can always avoid
the ground agent. However, it turns out that even though
the ground agent moves probabilistically, it will eventually
force the quadrotor into a corner and detect it. First, note
that if the camera reports that the agent is in the FOV,
there are at most two actions that the quadrotor can safely
use. For example, if the quadrotor is in the center region r3,3
and the camera reports observation NW because the agent
is in region r4,2, it is only safe to move south or east. If the
ground agent from now on moves identically as the quadro-
tor, eventually the quadrotor enters corner region r1,5. The
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Grid dim. |S|,|A|,|Obs| Time Policy, Size

5⇥ 5
Scenario 1 577/5/8 278.81s 5/�
Scenario 2 524/5/8 326.22s 3/1287
Scenario 3 409/5/12 20.12s 3/703

6⇥ 6
Scenario 1 853/5/8 323.02s 5/�
Scenario 2 800/5/8 581.84 3/2012
Scenario 3 605/5/12 30.21s 3/1052

7⇥ 7
Scenario 1 1185/5/8 610.94s 5/�
Scenario 2 1132/5/8 934.44s 3/2887
Scenario 3 524/5/12 46.86s 3/1419

8⇥ 8
Scenario 1 1573/5/8 MO �/�
Scenario 2 1520/5/8 MO �/�
Scenario 3 1117/5/12 78.98s 3/1964

Table 1: Results obtained for the three scenarios,
and their versions on larger grids.

ground agent then moves to r1,4 or r2,5 with probability 1/2,
and the camera reports observation NW with probability 1/2.
In this case, the quadrotor must remain hovering in the cor-
ner and it is detected by the ground agent in the next move
with positive probability. The discussed result is obtained
for the POMDPM1, but the argument for the non-existence
of a finite-memory policy is valid also in POMDP M1.

Scenario 2. In the second scenario we combine a restricted
ground agent GA

r

with the quadrant camera CamQuad. Intu-
itively, we do not allow the ground agent to enter the corner
regions to prevent the situation from the first scenario. Un-
like in Scenario 1, there exists an almost-sure winning policy
in this setting. The policy generated by the tool performs
as follows. The quadrotor starts in A and tries to reach B,
while avoiding the ground agent, and then uses the same
approach to reach A starting in B and so on. First, it waits
in A until it detects the agent in FOV and then chooses uni-
formly at random from all actions that are safe to use, e.g., if
the camera reports observations NE, the quadrotor remains
hovering over A, but if it reports NW, the quadrotor moves
with probability 1/2 east and it remains in A with probabil-
ity 1/2. If it moves to a neighboring region and the agent is
still in FOV, the next action is chosen in the same way as in
the first step. On the other hand, if the agent moves out of
FOV, the quadrotor can use the history of observations to
either continue towards B or a di↵erent corner, i.e., a safe
location. However, it is only safe to make one step without
the agent being in FOV of the camera, otherwise there is a
positive probability of running into the agent. The policy
minimization technique reduces the policy size by almost by
a factor of two, e.g., in the case of the 5 ⇥ 5 grid, the state
space reduces from 2033 to 1287 memory elements.

Scenario 3. In Scenario 3, we combine the unrestricted
ground agent GA

u

with the perfect camera CamPerf that is
able to track the position of the agent in FOV perfectly. In
this case, there again exists an almost-sure winning policy.
The synthesized policy proceeds in a similar way as the one
for Scenario 2. In every step, if the agent is in FOV, the next
move is chosen uniformly from all actions that are safe at
the moment, e.g., if the quadrotor is in region r3,3 and the
ground agent is in r4,3, the quadrotor plays action N, E and
S each with probability 1/3 each. Unlike in Scenario 1, even if
the quadrotor gets into a corner, the camera CamPerf allows
the quadrotor to escape. For example, if the quadrotor is in
region r1,5 and the ground agent is in r2,4, the quadrotor will
stay put until the agent moves either to region r1,4 or r2,5,
and then the quadrotor will get out of the corner by moving

Figure 3: Evaluation of policies generated for Sce-
nario 2 and 3. The statistics for each scenario is
provided over 100 runs that start in region A and
end with the first visit of region B.

to region r2,5 or r1,4, respectively. The policy minimization
gain in this scenario is not so significant, for the 5 ⇥ 5 grid
it reduces from 711 to 703 memory elements. The main
reason is, that Scenario 3 contains much less uncertainty
than Scenario 2, and the unminimized policy automaton is
already state-e�cient. The following remark summarizes
the obtained results.

Remark 1. In Scenario 1, the quadrant camera CamQuad

is not informative enough to avoid the ground agent. Hence,
there does not even exist a policy that wins with positive
probability. In Scenario 2, we kept the quadrant camera and
tried to restrict the ground agent such that it cannot enter
the corners of the grid. This turned out to be su�cient and
there exists an almost-sure winning policy. In the last sce-
nario, we replaced the camera with a more informative ver-
sion CamPerf and the results show that there exists an almost-
sure winning policy even in the case, where the ground agent
is not restricted and can enter the corner regions.

In Tab. 1, we provide running times and sizes of obtained
policies for all three scenarios. To demonstrate the scalabil-
ity of the game solving tool, we considered the three scenar-
ios on larger grids. In Tab. 1, we list running times for grids
5⇥ 5, 6⇥ 6, 7⇥ 7, and 8⇥ 8. All computations were run on
a quad-core i7 processor with 8 GB of RAM.

4.3 Simulation
We simulated the obtained policies for Scenario 2 and 3

in Matlab. For each of the two cases, we executed 100 runs
that start in region A and end with the first visit of region
B. In Fig. 3, we evaluate the number of steps that were
needed to reach B, i.e., the length of the resulting runs, and
the number of returns to A before B was reached. In Sce-
nario 3, where the camera provides more information about
the agent’s location, region B was reached faster and with
lower number of returns to A.
Note that even though the quadrotor is guaranteed to sat-

isfy the mission in Scenario 2 and 3 under the generated
policies, the number of steps needed to move from one re-
gion of interest to another, i.e., from A to B and vice versa,
is high. The reason is that in both policies, the next ac-
tion for the quadrotor is always chosen randomly from all
actions that are safe under the current observation, even
though some of the actions obviously lead to progress while
others move the quadrotor further away from its next goal
region. In our future work, we aim to look at the problem
of generating policies for POMDPs that not only provably
guarantee the satisfaction of given temporal constraint but
also optimize progress towards the satisfaction, e.g., in our
case the number of steps needed to move from A to B.
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Figure 4: Top: Robotic testbed used to demonstrate
runs of the quadrotor in all three scenarios. The
ground agent is simulated with a red circle. For bet-
ter visualization, the quadrotor’s current position on
the grid is marked with a small white circle.

4.4 Experiments on robotic platform
Besides simulation, we also used a robotic testbed to

demonstrate runs of the quadrotor in the environment. The
robotic testbed consists of a quadrotor flying above a square
area on which the grid of 5 by 5 regions is projected using
four projectors (see Fig. 4). The ground agent is simulated
as a large red circle that is being projected on the ground
together with the grid. The quadrotor is equipped with a
camera that uses an image processing procedure according
to the chosen scenario. In Fig. 5, we depict a sample image
taken by the camera during execution and the resulting im-
age after color recognition. For better visualization, we also
depict the division of the image into sectors. For the quad-
rant camera, the resulting observation is given as uniform
distribution over quadrants that contain white color, or the
central sector if it contains the majority of white. For the
perfect camera, the observation is given by the sector that
contains the majority of white. In both cases, the camera
reports the agent to be out of FOV if the image after color
recognition does not contain any white. The videos from the
demonstration are available at

http://www.fi.muni.cz/~x175388/demonstrationHSCC15.html.

For Scenario 1, we demonstrate a run, where the agent forces
the quadrotor into a corner and detects it. For Scenario 2
and 3, we demonstrate a run using the winning policies.

5. CONCLUSION AND FUTURE WORK
In this work, we used a theoretical tool to control a

quadrotor aiming to satisfy a temporal mission in a proba-
bilistic and partially observed, dynamic environment. The
obtained control policies are provably correct with respect
to the considered mission, but they do not progress towards
the mission satisfaction fast enough. In our future work, we
aim to use the insight gained from the case study to look at
the problem of generating policies that not only satisfy the
mission but also provide a guarantee on the rate of progress.
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