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Abstract. In this work, we present a novel vision-based solution for
operating a vehicle under Gaussian Distribution Temporal Logic (GDTL)
constraints without global positioning infrastructure. We first present the
mapping component that builds a high-resolution map of the environ-
ment by flying a team of two aerial vehicles in formation with sensor
information provided by their onboard cameras. The control policy for
the ground robot is synthesized under temporal and uncertainty con-
straints given the semantically labeled map. Finally, the ground robot
executes the control policy given pose estimates from a dedicated aerial
robot that tracks and localizes the ground robot. The proposed method
is validated using a two-wheeled ground robot and a quadrotor with a
camera for ten successful experimental trials.

Keywords: Vision-based localization · Temporal logic planning · Air-
ground localization · Heterogeneous robot systems

1 Introduction

In this paper, we propose a solution to the following problem: localize and con-
trol a ground robot under temporal logic (TL) specifications in an environment
with no global positioning infrastructure. Robots operating in the real world
typically require accurate pose estimates to compute effective control actions,
but in many cases, such as dense urban environments [1], GPS may be unavail-
able or unreliable. Furthermore, it is advantageous to consider an aerial robot
for on-the-fly tracking of the ground robot because it can aid in terms of local-
ization as well as obstacle avoidance, leaving the ground robot dedicated to
other tasks. In this work, we present a vision-based, GPS-denied solution to this
problem and demonstrate it experimentally with a sensor-deprived ground robot
that performs a persistent monitoring task specified by TL, while being local-
ized by a camera-equipped autonomous aerial vehicle (quadrotor). The solution
is split into three major components: map building in unknown environments,
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control synthesis under TL constraints, and localization during the mission. We
use vision-based formation control to build the map from multiple aerial vehicles
because we obtain a high fidelity mosaic map image without requiring SLAM
or other complex mapping algorithms. Our algorithm synthesizes the ground
robot’s control policy based on a labeled version of the map and a TL specifica-
tion. Finally, the ground robot executes the control policy while an aerial robot
provides pose measurements.

Consider a robot that must perform the following task in an outdoor disaster
site: “Periodically collect soil samples from the forest, then the beach. Deliver
samples to researchers. Go to a charging station after tasks are complete. Always
avoid known obstacles and restricted zones. Ensure that the uncertainty (mea-
sured by variance) of the robot’s pose is always below 1 m2.” Such a task may be
specified using Gaussian distribution TL (GDTL) [2], a specification language
that incorporates the robot’s desired position as well as uncertainty. Unfortu-
nately, the initial position of the robot is completely unknown and common
methods to synthesize a control policy for the robot, even while operating under
observation noise, will not be sufficient. Our solution alternatively requires the
deployment of a small network of quadrotors with cameras to first map the space,
prior to computing a control policy. Human operators then label the resulting
map to capture the properties expressed in the specification. This process is
known as grounding. Afterwards, our algorithm generates a feedback control
policy to satisfy the temporal and uncertainty constraints encoded in the spec-
ification. With a map image and ground robot control policy, one quadrotor
tracks and monitors the ground robot, providing it with pose information that
it uses to execute the mission.

This work also considers the cooperation between ground and air vehicles
and leverages their heterogeneous capabilities to jointly carry out a mission.
While other research exists for cooperation among mixed teams of ground and
air vehicles, existing research assumes the presence of GPS on either the ground
vehicles [3] or on the aerial vehicles [1,4]. We, on the other hand, assume the
robots are working in an environment with no external positioning framework
whatsoever. Other work that has focused on planning without GPS, such as [5],
uses the visual capabilities of an aerial vehicle to enhance a map built by a
ground vehicle. In this work, we assume the map is built by a team of aerial
vehicles using their high vantage point so that the ground vehicle can perform
a specific task based on the resulting map. Further, unlike these works, in our
work, the mission to be carried out is specified using GDTL, allowing for the
encoding of much more complex missions, including specifying the uncertainty
of the ground vehicle’s localization.

Map building and localization in unknown environments could be formu-
lated as in SLAM [6], where a robot uses its onboard sensor data—perhaps only
vision [7]—to refine an estimation of its pose while building a map of the environ-
ment. Unfortunately, these algorithms are typically computationally demanding
and require one or more sensing technologies which may not be feasible to include
on a ground robot due to cost, weight, or hardware limitations. Using vision-
based solutions from aerial cameras, on the other hand, allows for accurate pose
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estimation in complicated environments while only employing cheap, readily-
available RGB cameras. For example, homography-based visual servoing methods
provide accurate localization with only the use of camera data [8]. In this work, we
make use of homography-based consensus control methods [9] for the aerial vehi-
cles to build a mosaic map, and monitor the ground robot with a Position-Based
Visual Servoing (PBVS) control method designed to keep the robot in the field of
view at all times while guaranteeing sufficient overlap with the map.

2 Technical Approach

We propose an end-to-end framework (see Fig. 1) that includes a specialized,
two-wheeled ground robot and a team of aerial robots, i.e., N quadrotors, each
equipped with a downward facing camera and an altimeter. The team of quadro-
tors are first responsible for building the map of the unknown environment using
their onboard camera images. Then the ground robot operates under the com-
puted optimal control policy with the measurements provided by a single quadro-
tor tracking it from above. The entire framework is divided into three sequential
phases that include the following:

1. Generate a mosaic map image of the unknown environment using purely
vision and homography-based formation control [9] with multiple quadrotors.

2. Label the generated map and define the mission specification (to be completed
by human operator) and then automatically synthesize a satisfying control
policy for ground robot using GDTL-Feedback Information RoadMaps, or
GDTL-FIRM [2].

3. Simultaneously track and localize the ground robot with a single aerial vehicle
using a homography-based pose estimation and position-based visual servoing
control method.

2.1 Inter-image Homography

Map building and ground robot pose estimation rely on the inter-image homog-
raphy, Hij ∈ R

3×3, which defines the linear transformation between co-planar

Fig. 1. The proposed framework includes three major components: (1) mapping in
unknown environments, (2) control synthesis, and (3) online tracking and localization
of a ground robot.
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three-dimensional (3D) points described in two different coordinate frames, i.e.,
Pi = HijPj , where Pi ∈ R

3 and Pj ∈ R
3. The perspective projection of these

3D points yields the measured image features, pi ∈ R
2 and pj ∈ R

2, that are
given by the cameras i and j, respectively. These two image features are related
by the following homography, pi = H̃ijpj , where H̃ij = KHijK−1 is estimated
using standard least squares estimation [10] with at least four matched image
feature points, and K is the known calibration matrix of the identical cameras.
In this work, we assume that all quadrotors are flying at a sufficiently high alti-
tude to justify the co-planar requirements of points on the ground. Further, we
assume that the cameras are always parallel to the ground – as with a hovering
quadrotor. In this case, the rectified homography describes the transformation
between two parallel, calibrated camera poses,

Hr
ij =

⎡
⎢⎣
cos(ψij) − sin(ψij) −xij

zj

sin(ψij) cos(ψij) − yij
zj

0 0 1− zij
zj

⎤
⎥⎦ , (1)

where [xij , yij , zij , ψij ]T ∈ R
4 is the estimated parallel pose of camera j in the

frame of camera i. In practice, we guarantee the parallel camera assumption by
removing the roll and pitch effect of a translating quadrotor from the acquired
image, i.e., Hr

ij = Rθi
Rφi

K−1H̃ijKRT
φj
RT

θj
, given the roll, φ, and pitch, θ, of

each quadrotor. We extract the relative position from the last column of Hr
ij ,

given the altitude of the cameras provided by the altimeter, and the relative
orientation from the upper 2× 2 block of Hr

ij .

2.2 Homography-Based Formation Control

Homography-based formation control [9] drives the team of quadrotors that gen-
erates the high fidelity mosaic map image, which is a composite image of the
quadrotors’ onboard images while in formation. The consensus-based kinematic
control laws that drive the formation of quadrotors to their desired relative
pose, [x∗

i,j , y
∗
i,j , ψ

∗
i,j ]

T , are functions of the computed rectified homography from
Eq. (1), i.e.,

wzi
= Kw

∑

j∈Ni

(
arctan

[
[Hr

ij ]21
[Hr

ij ]11

]
− ψ∗

ij

)
, (2)

[
vxi

vyi

]
= Kv

∑

j∈Ni

([[
Hr

ij

]
13[

Hr
ij

]
23

]
−

[
x∗

ij

y∗
ij

])
, (3)

vzi
= Kv

∑

j∈Ni

(
1 − [Hr

ij ]33
)
, (4)

where [vxi
, vyi

, vzi
]T is the translational velocity control and wzi

is the rotational
velocity control about the z-axis of the quadrotor, i.e., its yaw. Note that the
element in row a and column b of Hr

ij is denoted by [Hr
ij ]ab. The relative yaw

does not affect zij , therefore, the relative altitude can be controlled towards
zero using [Hr

ij ]33. The team produces the mosiac map of the environment when
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the quadrotors reach the chosen formation that yields sufficient image overlap
for accurate pose estimation and large enough field of view to cover the region
of interest in the environment. It is worth noting that this component of our
solution framework could be omitted if given a high resolution map, such as a
satellite image.

2.3 GDTL-FIRM

The GDTL-FIRM algorithm computes the optimal control action for the ground
robot under a GDTL specification given that the previously computed map has
been labeled and the specification has been provided. We assume that a human
operator labels the map built by the aerial vehicles. Alternately, this labeling
could be accomplished automatically by a segmentation and classification algo-
rithm. We utilize the work of [2] to synthesize the control polices for the ground
robot with temporal and uncertainty constraints. In brief, the sampling-based
algorithm generates a transition system in the belief space and uses local feed-
back controllers to break the curse of history associated with belief space plan-
ning. The algorithm is based on Feedback Information RoadMaps (FIRMs),
where points are sampled directly in the state space and feedback controllers
are used to stabilize the system about nodes in the roadmap, thus inducing a
roadmap in the belief space. A product Markov Decision Process (MDP) between
the transition system and the Rabin automaton encoding the GDTL task spec-
ification is used to compute the switching control policies. Finally, the MDP is
queried for the existence of satisfying control policies of high enough probability.

2.4 Robot Tracking and Localization

The ground robot executes its mission in the environment by traversing the
transition system generated in the previous phase while employing an Extended
Kalman Filter (EKF) to estimate its position with measurements provided by
the dedicated aerial vehicle. A localization marker on the ground robot includes
two distinctly colored patches that aid in estimating its planar position and
orientation in the environment frame. During localization, the quadrotor first
localizes the centroid of each patch in the quadrotor’s image frame as two image
features, (pq

1,p
q
2). The quadrotor simultaneously calculates the rectified homog-

raphy between the quadrotor’s image frame (q) and the mosaic map image frame
(m), i.e., Hr

qm, to estimate the relative pose between the quadrotor and the map.
The quadrotor projects the robot’s pose in the image frame (pq

1,p
q
2) to the map

frame (pm
1 ,pm

2 ) using Hr
qm. The quadrotor finally computes the ground robot’s

final pose in the environment frame (e), given by (x, y, θ), by linearly interpolat-
ing (pm

1 ,pm
2 ) with the dimensions of the map image – in pixels – and the known

dimensions of the environment – measured in meters. The centroid of the pro-
jected features yields the position, (x, y), while the orientation, θ, is calculated
using the line that connects the two projected features.

Meanwhile, a 2D kinematic PBVS controller maneuvers the aerial robot to
track the ground robot while simultaneously keeping sufficient overlap with the
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mosaic map image for an accurate homography estimation. Recall that the field-
of-view of the individual cameras is not sufficient to view the entire environment,
hence the requirement for the composite map image. Homography-based control
drives the quadrotor into a desired position above the environment that is defined
by the estimated position of the ground robot, (x, y). The quadrotor’s position is
further constrained to a rectangle, R = [xmin, xmax] × [ymin, ymax], where the
boundaries of R affect the amount of desired overlap with the mosaic image. For
example, setting the boundaries equal to the dimensions of the environment will
drive the quadrotor directly over the ground robot, thus degrading the homog-
raphy estimate when hovering near the environment’s edges. Conversely, setting
the boundaries equal to zero would keep the quadrotor coincident with the mosaic
image frame and will lose coverage when the ground robot is near the edge of the
environment. The ideal boundary values for a downward facing camera allows the
camera to move just far enough to see the entire environment, i.e.,

[
xmin

ymin

]
= −

[
xmax

ymax

]
=

[
we−ewq

2
he−ehq

2

]
, (5)

where (we, he) are the width and height of the environment in meters, (ewq,
ehq)

are the dimensions of the quadrotor’s image frame, (wq, hq), after being projected
into the environment frame. This projection is computed as,

⎡

⎣
ewq
ehq

A

⎤

⎦ = AK−1

⎡

⎣
wq

hq

1

⎤

⎦ , (6)

given the camera’s altitude, A, and camera calibration matrix, K. The ideal
rectangle size for our camera (640 × 360) at the desired experiment altitude of
1.8 m is approximately 0.85×1.45 m. Unfortunately, our camera is not downward-
facing, therefore we expand R to 0.85×2.0 m to ensure proper coverage. Finally,
we introduce an optional offset, xoffset, that measures the center of mosaic map
image’s virtual position in space with respect to the quadrotor’s frame. We use
an offset 0.75 m in the positive x-direction of the local quadrotor frame (see
Fig. 2) to account for the forward-facing camera.

The final controller is similar to the homography-based formation controller
in Sect. 2.2. In fact, the yaw controller of Eq. (2) and the altitude controller of
Eq. (4) remain the same with a desired relative pose equal to zero. The planar
control vector is calculated as the following,

[
vx

vy

]
= Kv

([[
Hr

qm

]
13[

Hr
qm

]
23

]
−

[
linint(x, (0, we), (xmin, xmax)) − xoffset

linint(y, (0, he), (ymin, ymax)) − yoffset

])
,

(7)
where linint(·) is the linear interpolation function that transforms the ground
robot’s environmental position into the quadrotor’s desired position within R.
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Fig. 2. Coordinate frame definitions for the PBVS controller from Eq. (7) include the:
environment frame, mosaic map image frame, quadrotor image frame, mosaic map
frame center, and quadrotor frame. The quadrotor estimates the ground robot’s pose
(x, y, θ) by transforming the pose in the quadrotor image frame to the environment
frame. The quadrotor manuevers within R based on the ground robots’s pose in the
environment frame. The quadrotor local frame and mosaic map frame center are defined
with the same orientation as the environment frame.

3 Results and Experiments

We validate all three phases of this framework by executing a complete mission
experiment with a heterogeneous team of autonomous robots. The phases are
completed in the order specified in Sect. 2 due to the dependence on the results
from previous phases. We first detail our map building results with a mosaic
map that is generated using the homography-based formation control and two
quadrotors with cameras that do not have access to GPS. GDTL-FIRM synthe-
sizes the control policy for a ground robot with nonlinear unicycle dynamics in
the environment for a GDTL specification over belief states associated with the
measurement of the robot’s position. Finally, a quadrotor successfully tracks and
localizes the ground robot while it completes the previously defined mission.

3.1 Experimental Setup

We perform experiments in the Boston University Robotics Laboratory. We use a
map of Boston University’s campus, located in Boston, MA, USA, that includes
parts of Charles River, Massachusetts Turnpile, Fenway Stadium, and BU Cen-
tral campus. We utilize the real landmarks in this map to formulate our specifi-
cation. This map is chosen because it has sufficient detail and texture to allow
for adequate feature matching (e.g., white buildings at the bottom of the map)
as well other minimal feature regions (e.g., the Charles River). The physical map
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is printed on a 12× 16 ft2 vinyl banner. We utilize an Optitrack motion capture
system1 for obtaining ground truth measurements.

The ground robot is a two-wheeled DrRobot X80Pro2 with no onboard sens-
ing. We fit the ground robot with an identifying marker composed of two uniquely
colored patches in the YUV color space for planar position and orientation local-
ization (see Fig. 5). Parrot Bebop quadrotors3 are the aerial vehicles used for
map building, and later, tracking. The Bebop is an off-the-shelf quadrotor plat-
form with a suite of sensors that include an Inertial Measurement Unit (IMU),
a downward-facing pinhole camera for optical flow stabilization, an ultrasonic
sensor for altitude measurements, and a 180◦ wide-angle 14 megapixel forward-
facing camera. The large forward-facing camera produces a 640 × 360 pixel sta-
bilized video feed that can be ‘steered’ within the field-of-view of the wide-angle
lens to produce a ‘virtual camera’ video feed. We position the virtual camera at
the maximum angle of θbebop measured about the y-axis of the quadrotor (see
Fig. 3(a)), where θbebop ≈ 50◦, and rectify the image for this angle.

The Robot Operating System (ROS) [11] handles all communication on a
local area network via Wi-Fi. We control the quadrotors from a base station com-
puter running the ROS Bebop Autonomy package [12] which incorporates Par-
rot’s open-source SDK. The computer also acquires and processes image frames
from the quadrotors’ real-time video stream via the OpenCV libraries [13]. Inde-
pendent ROS nodes handle the individual quadrotors for the formation flight,
demonstrating the distributed control. Independent ROS nodes also handle the
quadrotor and ground robot control during the tracking phase. In this phase,
separate quadrotor nodes handle the image processing for robot localization,
pose estimation via homography, and the control. The ground robot node exe-
cutes the local control and EKF estimation of the ground robot given its pose
estimate and nonlinear dynamics. All vision computations are performed on an
Ubuntu 14.04 machine with an Intel Core i7 CPU at 2.4 GHz and 8GB RAM.

3.2 Formation Control and Map Generation

We utilize a team of two quadrotors to reach a desired formation where,
y∗
1,2 = −y∗

2,1 = 1.2 m, and all other desired relative poses are set to zero (see
Fig. 3(a)). This formation is carefully chosen because it ensures the pair of aerial
cameras have enough overlap for accurate relative pose estimation while guaran-
teeing a complete view of the environment. All quadrotors are flown to a desired
height of 1.8 m. The quadrotors reach the desired formation (Fig. 3(c)) from the
initial conditions (Fig. 3(b)) in approximately 15 s. From this point, the user has
the ability to control one vehicle in the formation to fine tune the result of the
online mosaic map, which is displayed at approximately 2.5 Hz. In this exper-
iment, the operator maneuvers quadrotor 1 until the left edge of the map is

1 Natural Point Optitrack: https://www.optitrack.com.
2 DrRobot X80Pro: http://www.drrobot.com/products item.asp?itemNumber=
x80pro.

3 Parrot Bebop: http://www.parrot.com/products/bebop-drone/.

https://www.optitrack.com
http://www.drrobot.com/products_item.asp?itemNumber=x80pro
http://www.drrobot.com/products_item.asp?itemNumber=x80pro
http://www.parrot.com/products/bebop-drone/
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Fig. 3. Final mosaic map result using the homography-based formation control method.
Note that quadrotor and camera coordinate systems are only labeled once in (a) for
clarity.

completely visible and then releases it to autonomous control again. Meanwhile,
the formation control law in Sect. 2.2 controls quadrotor 2. The onboard images
at the final desired formation (Figs. 3(d)–(e)) were used to generate the final
mosaic map image shown in Fig. 3(f).

3.3 GDTL-FIRM

The specification for the ground robot is encoded with GDTL and is given as
the following: “Always avoid all obstacles, i.e., Charles river and Massachusetts
Turnpike. Always eventually visit Kenmore Square, Marsh Plaza, Audubon Cir-
cle, and Fenway Stadium. From Kenmore Square or Marsh Plaza, Bridge2 (St
Mary’s St) can not be used to visit Audubon Circle or Fenway Stadium. From
Audubon Circle or Fenway Stadium, Bridge1 (Beacon Ave or Brookline Ave) can
not be used to visit Kenmore Square or Marsh Plaza. Always keep uncertainty
about the robot’s pose below 0.9 m2, and on bridges, the uncertainty must be
below 0.6 m2, where uncertainty is measured as the trace of the estimation pose
covariance matrix.” Fig. 4(a) shows the resulting transition system and control
policy, computed by the algorithm from [2]. The transition system has 35 nodes
and 226 edges while the product automaton has 316 nodes and 3274 edges. The
algorithm executed in approximately 62.24 s.

3.4 Pose Estimation and Mission Execution

The ground robot executes the mission using the previous control policy and
quadrotor for localization. Initially, the quadrotor takes off from a position where
the camera’s field of view is facing towards the ground robot. The homography-
based localization and quadrotor control (Sect. 2.4) begin once the ground
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Fig. 4. FIRM-GDTL results plotted over the ground truth environment image. (a)
shows the transition system in white and the policy in orange. (b) shows the ground
truth in green, the measurement in yellow, the estimated pose in red, and the covariance
ellipses in blue. (c) shows the ground truth in green for all runs. (d) shows the covariance
for all runs. The spikes in covariance indicate the beginning of a new run after a
quadrotor battery had been replaced. We initialize the covariance to an arbitrarily
large value at time step 0 that drastically decreases with the first pose measurement
from the quadrotor at time step 1.

robot’s marker has been detected. The ground robot localization estimates
update at approximately 3.5 Hz. We show an example of the robot tracking
and pose estimation for three time steps in Fig. 5. It is clear that the control
method tracks the ground robot during its route with enough image resolution
to detect the robot’s patches and also maintains the required overlap with the
mosaic map image.

Figure 5 also illustrates the final pose estimation in the mosaic map frame. It
is important to note that the ground robot sits 0.2 m above the map, therefore
projecting the image features of the ground robot’s marker directly into the map
frame would add significant error to the final estimation. The image features



Localization of a Ground Robot by Aerial Robots 535

Fig. 5. Pose estimation results of live tracking and localization are shown in (a, c, e)
with onboard images (left) and the mosaic map image (right). The corresponding top
views of the experiment is shown in (b, d, f), respectively. The image matches and pose
estimations are drawn for visualization purposes.

are instead offset to the map plane before projecting the features to the mosaic
map to satisfy the homography’s planar assumption. We determine this offset by
measuring the pose estimation error at the extremes of the map and interpolating
for the correction as a function of the estimated pose.

We ran the mission five times due to the limitations of the quadrotor battery,
yielding ten complete laps of the environment and four partial laps, all of which
satisfied the GDTL specification. We show an example run of 2.5 laps in Fig. 4(b)
that displays the ground robot’s ground truth pose, estimated pose, measured
pose, and uncertainty. We check for satisfaction by inspecting the ground truth
of all experimental runs to ensure the robot has reached each region appropri-
ately while avoiding obstacles (Fig. 4(c)). Moreover, the covariance of the robot’s
estimate for all experimental runs is safely below the minimum 0.6 requirement,
thus satisfying the specification (Fig. 4(d)).

4 Conclusion

The main experimental insight gained from this work is how to feasibly break the
dependence on external positioning information while controlling robots under
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TL specifications. Specifically, we are interested in studying the satisfaction of
GDTL specifications by (ground) robots operating under uncertainty. Encoding
specifications with GDTL is advantageous because it defines performance goals
for the uncertainty of the system, allowing us to complete high-level missions
under noisy measurements. This work also gives insight into the formulation of
a mobile vision-based sensing method for control under TL specifications.

Another technical insight stems from the effects of using off-the-shelf equip-
ment in this framework since airborne cameras are a cheap, light weight sensor
solution that allow for high fidelity 3D pose estimation. We show that inex-
pensive and widely available ground and aerial robots can be used to perform
complex missions with TL and uncertainty constraints, therefore adding flexibil-
ity in future applications. Moreover, we consider a simple dynamic sensor that
is far more reconfigurable than a fixed-camera network alternative.

The experimental setup for vision-based control with aerial vehicles also pro-
vided valuable experimental insight. The lighting conditions of the flying space
proved to be critical and had to be carefully modified to reduce glare from the
reflective vinyl banner material. The oblique angle of the quadrotor’s onboard
camera also complicated the control strategies since we could not rely on the
standard down-ward facing camera assumptions. Lastly, this vision-based tech-
nique does encounter pose estimation innacuracies when the quadrotor cameras
have very poor resolution compared to the map. Further, the entire pipeline
depends on the success of feature matching that encounters problems at drastic
resolution differences. However, these experiments show that our framework is
well suited for remote outdoor scenarios where aerial vehicles or satellite imagery
could serve as the map and only camera-outfitted aerial vehicles are required for
localization.
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