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ABSTRACT: Binning cells by plasmid copy number is a
common practice for analyzing transient transfection data. In
many kinetic models of transfected cells, protein production
rates are assumed to be proportional to plasmid copy number.
The validity of this assumption in transiently transfected
mammalian cells is not clear; models based on this
assumption appear unable to reproduce experimental flow
cytometry data robustly. We hypothesize that protein
saturation at high plasmid copy number is a reason previous
models break down and validate our hypothesis by comparing
experimental data and a stochastic chemical kinetics model.
The model demonstrates that there are multiple distinct physical mechanisms that can cause saturation. On the basis of these
observations, we develop a novel minimal bin-dependent ODE model that assumes different parameters for protein production
in cells with low versus high numbers of plasmids. Compared to a traditional Hill-function-based model, the bin-dependent
model requires only one additional parameter, but fits flow cytometry input−output data for individual modules up to twice as
accurately. By composing together models of individually fit modules, we use the bin-dependent model to predict the behavior
of six cascades and three feed-forward circuits. The bin-dependent models are shown to provide more accurate predictions on
average than corresponding (composed) Hill-function-based models and predictions of comparable accuracy to EQuIP, while
still providing a minimal ODE-based model that should be easy to integrate as a subcomponent within larger differential
equation circuit models. Our analysis also demonstrates that accounting for batch effects is important in developing accurate
composed models.
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In synthetic biology, there has been an increased use of
transfection systems in mammalian cells in recent years.

One reason for this increase is that transfection enables the
production of important biomedical-related proteins, which
can only become biologically active within mammalian cells.1−4

Transient transfection is a common method for the delivery of
foreign genetic materials into mammalian cells.5−7 The
transfected genetic materials utilize the cells’ innate transcrip-
tional and translational machineries to get expressed.
Transiently transfected genes are only expressed temporarily,
and do not become integrated into the host’s genome.
Compared with stable transfection, transient transfection offers
faster expression of transfected genes, with higher expression
levels. It also has lower cytotoxicity and induces no
mutagenesis.3,8,9 It has been shown to be an effective technique
for speeding up the screening of novel synthetic designs.10

These properties have motivated the investigation of transient
transfection in mammalian synthetic biology.3,11

Modern synthetic biology is inseparable from the computa-
tional models that guide the construction of synthetic
networks.12 One challenge in building such models for
mammalian cells arises from the need for a more

comprehensive understanding of the cellular mechanisms
underlying the transfection system.12,13 Another challenge is
predicting the behavior of genetic circuits based on the
behavior of the building blocks of the circuits, also known as
modules.14−20 Chemical kinetic models have proven capable of
describing circuit behavior in prokaryotic cells, which replicate
foreign plasmids,21,22 and in stably transfected eukaryotic cells
in which plasmids are genome-integrated.23 Plasmid copy
number is assumed fixed in both of these scenarios. For
transiently transfected mammalian cells (TTMC), there is a
large variation in plasmid copy numbers across a popula-
tion.24,25 Binning cells by plasmid copy number is a common
practice for analyzing flow cytometry data in this context
(Figure 1(b)).26−28 Subpopulations of cells with similar
plasmid counts can then be studied in groups (Figure 1(c)).
Developing a modeling approach that is compatible with
binning is a prerequisite to building predictive models for
complex circuits in TTMC. Davidsohn et al. developed a
traditional Hill-function-based model for TTMC,26 where the
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rate of protein production is assumed to be proportional to the
average plasmid copy number in each bin. Unfortunately, as
they demonstrated, this model does not fit their flow
cytometry data well.
In this work, we hypothesize that high plasmid copy number

may cause saturation in the levels of expressed proteins,
leading to the breakdown of traditional Hill-function-based
models in this context. To validate our hypothesis, we study
detailed two-stage gene expression models of a transient
cotransfection system via the Gillespie algorithm,29,30 bin the
simulated data by plasmid counts, and calculate the average
protein concentrations within each bin. The agreement
between the simulated results and the experimental data
suggests that when physical gene expression parameters lie
within a particular range, saturation of the rate of either
transcription or translation can give rise to the observed
saturated protein concentrations in experiments. These results
suggest that the precise mechanism leading to the saturation of
protein levels cannot be distinguished from just single-time
flow cytometry measurements. To facilitate predictive
modeling of circuits, we next develop a bin-dependent ordinary
differential equation (ODE) model that splits flow cytometry
data into two subsets based on plasmid copy number. This
coarse-grained model can more accurately account for
saturation in protein levels compared to standard Hill-function
models, but avoids the need to specify a precise biological
mechanism giving rise to saturation. For each plasmid copy
number subset we fit separate kinetic parameters to the model,
motivated by observations from the detailed stochastic model
simulations. The resulting bin-dependent model is shown to
outperform a traditional Hill-function-based model in
reproducing input−output relationships for individual mod-
ules, yet requires only one additional parameter. By composing
models fit to these individual modules, the bin-dependent
model is also shown to predict the behavior of circuits
composed of multiple modules more accurately than Hill-
function-based models, while offering comparable accuracy to
the EQuIP method of ref 26. As the bin-dependent model is
itself described by standard chemical-kinetics type ODEs for
chemical concentrations, it can be easily integrated as a
subcomponent within other differential equation circuit
models, and easily extended to include more biological details
or features for any given system. Note, in the remainder,

species are denoted by Roman text, and concentrations by
italicized text.

■ RESULTS AND DISCUSSION

Experimental Data. The first step in building our circuit
model is to examine experimental data. In this paper we adopt
a bottom-up approach to making circuits via the assembly of
individual modules, where a module is defined as a single
transcriptional regulatory switch, consisting of a transcription
factor, the downstream regulated promoter and its gene. As an
example of the types of modules we will use, consider a module
comprising a fluorescent-reporter system involving three
fluorescent genes: the induced (input) gene, the regulated
(output) gene and the transfection marker (Figure 1(a)). The
expression levels of the fluorescent genes are measured via flow
cytometry, with the fluorescence intensities used as proxies for
the concentrations of the fluorescent proteins. The induced
gene is regulated by a constitutive activator protein, and an
external inducer whose concentration can be controlled. The
product of the induced gene serves as a transcription factor for
the regulated gene, controlling the latter’s expression of a
fluorescent reporter. The induced gene’s product is not
fluorescent, but is measured by coexpressing a fluorescent
reporter gene of a different color from a promoter that has the
same sequence but is encoded on a different plasmid.31 The
expression of the induced gene can be modulated by changing
the amount of the inducer. Expression of the induced gene and
the regulated gene at various inducer levels forms a dose−
response curve (Figure 1(c)). In TTMC, expression levels are
largely determined by the numbers of plasmids transfected in
individual cells,25,26 which cannot be controlled and are highly
variable across a population. It is, therefore, necessary to
estimate the plasmid copy numbers so that the effect of
variation in copy numbers on gene expression can be captured.
This is often achieved by cotransfecting another constitutively
expressed fluorescent protein, which serves as the transfection
marker (Figure 1(a)). The induced gene, the regulated gene,
and the transfection marker can be encoded on either one
plasmid or separate plasmids. The former ensures that there is
a one-to-one correspondence among the genes. In comparison,
the latter is often preferred as separate plasmids can be
absorbed by cells more readily due to smaller sizes,
interference among the transcriptional units is minimized,

Figure 1. (a) Abstraction of a system comprised of a transfection marker and a module (in blue) encoding a transcriptional regulatory switch. See
Figure S1(a) and ref 26 for more detailed illustrations. The induced (input) gene I, activated by an inducer, regulates the expression of O, the
regulated (output) gene. Z, the transfection marker, is used to estimate plasmid copy number. (b) Distribution of the transfection marker. The
black bins are ignored because they represent untransfected cells (data from ref 26). (c) Dose−response curves obtained from an experiment (data
from ref 26). Averaged measurements binned by the expression level of Z are shown by color. Cells are separated into bins of width 0.1 on a log
scale. Each curve corresponds to a different bin. The first bin, represented by the curve at the bottom, contains cells with the lowest plasmid counts.
Each dot represents the average concentrations of the induced protein and the regulated protein within a bin at a certain inducer level.
Concentrations of the induced and the regulated proteins have units of MEFL. Details about data generation and binning can be found in
Supporting Information Section 1.1.
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and the concentrations of individual proteins can be adjusted
more easily.32,33 In what follows, we assume the transfection
marker has been encoded on a separate plasmid for all models
and experiments. We also assume the induced gene serves as
an inhibitor of the regulated gene.
Fluorescence readings from flow cytometers can be

converted to standard units of molecules of equivalent
fluorescein (MEFL) via TASBE control.26,34,35 Standardized
data are segmented into bins by plasmid counts so that
subpopulations of cells with similar plasmid counts can be
studied in groups (Figure 1(c)).26,27,36 Since flow cytometry
measurements are typically log-normal distributed or a mixture
of two log-normal distributions,37,38 binning is performed on a
log scale to ensure that each bin contains relatively equal
numbers of cells. The width of bins is selected depending on
the resolution at which analysis is to be conducted. An example
of binning can be found in Supporting Information Section 1.1.
In this paper, we will focus on the average temporal behavior
within each bin, with the goal of developing ODE models that
can be directly parametrized from binned flow cytometry data.
Protein Concentration vs Plasmid Copy Number. Hill

functions are commonly used to model transcriptional
regulation in ODE models (Figure 1(a)) (see Supporting
Information Section 3 for a mathematical definition of a Hill
function). Davidsohn et al. developed a traditional Hill-
function-based model to describe the time evolution of the
induced and the regulated proteins in TTMC (Figure
1(a))26,39 (see Supporting Information Section 3). A key
assumption of their model is that the log of the maximal
production rate of the regulated protein is a linear function of
the log of the transfection marker. This assumption is
supported by findings of several other studies in different
biological contexts.25,40 However, this assumption is only

partially supported by the experimental data in ref 26, shown
here in Figure 2. When the induced gene is minimally induced
(0 nM of inducer), i.e., the regulated protein expressed without
repressor, the log of the regulated protein’s concentration
grows proportionally to the log of the transfection marker
between 105.8 and 107 MEFL for TAL14 and TAL21 or
between 105.8 and 107.3 MEFL for LmrA. When the induced
gene is fully induced (2000 nM of inducer), the log of the
induced protein’s concentration also grows linearly in the log
of the transfection marker between 105.8 and 107 MEFL for
TAL14 and TAL21 or between 105.8 and 107.3 MEFL for
LmrA. Figure 2 also suggests that when either the induced
gene or the regulated gene is maximally expressed, the
concentrations of both the induced and the regulated proteins
saturate starting from 107.1 MEFL for TAL14 and TAL21 or
107.4 MEFL for LmrA.
Furthermore, Figure 2 and the data in ref 26 suggest that

when the induced gene is induced at 0 nM, the log of the
induced protein’s concentration is near-constant for low
plasmid copy numbers.26 When the induced gene is fully
induced, i.e., the regulated protein fully repressed, the log of the
regulated protein’s concentration grows linearly across all bins.
We now develop a detailed stochastic model of the plasmid

system, similar to the one Davidsohn et al. constructed
experimentally.26 This model will enable us to explore possible
mechanisms contributing to the observed saturation of protein
concentrations at high plasmid copy number, as well as the
near constant protein concentrations at low plasmid copy
number. We do not attempt to fit this model to the single-time
flow cytometry data directly as it is too complex to fit
accurately without the incorporation of additional experimen-
tal measurements. Instead, our purpose here is to use the
stochastic model to gain a qualitative understanding of which

Figure 2.Maximal and minimal expressions of the induced gene I and the regulated gene O for TAL14, TAL21, and LmrA. In the figures, the x-axis
corresponds to the concentration of the transfection marker, and the y-axis to the concentration of the input and the output proteins (here
concentrations are in units of MEFL). Shown in red is the induced gene I, and in blue the regulated gene O. Each dot is the average protein
concentration of cells from one bin. On the top row the circuit is induced at 0 nM; on the bottom row, 2000 nM. On the top row, least-squares
regression lines are fit to red dots from 107 to 107.9 MEFL (TAL14 and TAL21) or from 107.3 to 107.9 MEFL (LmrA), and to blue dots from 105.8 to
107 MEFL (TAL14 and TAL21) or from 105.8 to 107.3 MEFL (LmrA). On the bottom row, least-squares regression lines are fit to red dots from
105.8 to 107 MEFL (TAL14 and TAL21) or from 105.8 to 107.3 MEFL (LmrA), and to blue dots from 105.8 to 107.9 MEFL. The dots are calculated
from the flow cytometry data of ref 26.
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biological hypotheses, and what ranges of physical gene expression
parameters, may contribute to the observed saturation ef fect. Our
ultimate goal is to develop a simple model that qualitatively
describes our limited set of data, avoiding further time-
intensive experimental assays. Therefore, in the next
subsection, we develop a more simplified ODE model that
can be parametrized from just the limited flow cytometry data,
building from the qualitative understanding of the two-plasmid
system our stochastic model provides.
In our stochastic model, cells are cotransfected by a mixture

of induced gene plasmids and transfection marker plasmids.
We focus on the dynamics of the transfection marker and the
induced gene, which are integrated on separate plasmids. The
total initial number of plasmids transfected in a given cell is
assumed to follow a log-normal distribution.26,37 This
assumption is because the shape of the protein distribution
is known to reflect the shape of the underlying plasmid
distribution,41 and the protein distribution is often observed to
be approximately log-normal.37,38 The conditional distribution
of the number of each of the two types of plasmids, given the
total number of plasmids, is assumed to be binomial.26 This is
because the plasmids we consider are assumed to be well-
mixed, of relatively small and similar sizes, and hence
indistinguishable for purposes of cotransfection.26 In the
remainder, we choose values for kinetic parameters such that
they span the parameter distributions calculated from tran-
scriptomics and proteomics data given in ref 42. We select
parametric values for the initial plasmid distributions based on
the polymerase chain reaction (PCR) findings of refs 24, 40,
43. The biochemical reactions in our model are shown below:

D D M D D M
K K

tm tm tm induced induced induced
1 2→ + → +

M M P M M P
K K

tm tm tm induced induced induced
3 4→ + → +

M Mtm induced
1 2→ ⌀ → ⌀

Λ Λ

P Ptm induced
3 4→ ⌀ → ⌀

Λ Λ

where D, M, and P stand for plasmid, mRNA, and protein.
Subscript “tm” stands for the transfection marker, and
“induced” for the induced gene that is cotransfected. Λi (i =
1−4) are first order degradation rate constants. Depending on
the hypothesis underlying each model, Ki (i = 1−4) are defined
either as normal first-order rate constants, where K1 = k1 · Dtm,

and K2, K3, and K4 are defined similarly, or as Michaelis−
Menten (MM) equations, where a saturated K1 is defined as

K D
D K1,max

D

tm

tm tm
· + , and saturated K2, K3, and K4 are defined

similarly. K1,max represents the maximal value of K1, and KDtm

the half saturation constant. Further details of the models,
including plasmid dilution mechanism and length of the
simulation, can be found in Supporting Information Section
2.1. Using StochKit and GillesPy, for each fixed set of
parameters we simulate this model using the Gillespie method
400 000 times.29,30,44,45 This is comparable to the number of
experimental samples generated in ref 26. After simulation, we
divide the simulated data based on the transfection marker into
bins of width 0.2, which is comparable to values that are
typically chosen in flow cytometry experiments.26,27,36 We then
calculate the geometric mean of the induced protein’s
concentrations for each bin.
To examine the mechanisms that contribute to the near-

constant induced reporter concentrations at low plasmid copy
number, and the saturating induced reporter concentrations at
high plasmid copy number, we systematically vary individual or
pairs of parameters while holding the remaining parameters
constant. We begin by examining possible mechanisms that
lead to near-constant induced reporter concentrations at low
plasmid numbers, creating two cohorts of models. In each
cohort we assume that Ki are normal first-order rate
expressions, i.e., K1 = k1Dtm with K2, K3, and K4 defined
similarly. The first cohort varies only the translational rate
constants k3 and k4, while the second cohort varies only the
induced gene’s transcriptional rate, k2. Simulations of the
stochastic model demonstrate that either increasing translation
rates, or decreasing transcription rates, can lead to the
observed constant induced reporter levels at low plasmid
copy numbers (Figure 3).
We next investigate mechanisms that may cause protein

concentrations to saturate at high plasmid copy numbers.
Though the physical mechanism has not been proven, several
experimental studies conclude that some steps of the
transcription process may saturate in cells expressing large
amounts of mRNA.46,47 It has also been suggested that the
cationic liposomes used in transfection inhibit the process of
transcription.48 Hence, it is possible that a high concentration
of liposomes (associated with high plasmid copy numbers) is
also a mechanism that induces saturation in transcription rates.
Motivated by these possible mechanisms, we modify our

Figure 3. Simulations of our stochastic model suggest that either increasing translation rates (a) or decreasing transcriptional rates (b) can extend
the near-constant induced gene levels at low copy plasmid numbers. The x-axis and y-axis stand for number of molecules of the transfection marker
and the induced protein in each bin. Best fit horizontal lines are drawn for reference. (a) Comparison of models in which the translational rates
decrease in order from 1000 to 1 molecule per mRNA per hour. (b) Comparison of models in which the transcriptional rate of Dinduced increases
from 0.002 to 1 molecule per plasmid per hour.
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stochastic model to incorporate saturation of transcriptional
kinetics. We now take the transcription rates, K1 and K2, to be
given by saturating MM approximations with MM constants,
KDtm

and KDinduced
(see Supporting Information Section 2.1).

Here smaller KD values correspond to saturation beginning at
lower plasmid copy numbers. By systematically varying both
KD values (see Supporting Information Section 2.1), we
observe that transcriptional saturation may induce protein
saturation when KDinduced

≪ KDtm
(see Figure 4(a)). That is,

protein levels as a function of the amount of plasmid may
saturate if the transcriptional rate of the induced reporter
saturates at a lower level of plasmid than that at which the
transcriptional rate of the transfection marker saturates.
Finally, we now investigate whether translational saturation

can also induce saturation in protein levels at high plasmid
copy numbers. Tachibana et al. presented experimental
evidence which suggests that protein synthesis saturates
when a large amount of mRNA is present.24 Motivated by
this study, we now consider a version of our stochastic model
where the transcriptional rates K1 = k1Dtm and K2 = k2Dinduced
are nonsaturating first order reactions as in our first model, but
the translation rates K3 and K4 are saturating MM
approximations. Since the induced gene and the transfection
marker are homologous fluorescent genes, we use the same
maximal translation rates and same MM constants in K3 and K4
(see Supporting Information Section 2.1). This final version of
our model suggests that under the hypothesis of translational
saturation, protein reporter saturation can be observed if k2 ≫
k1, i.e., if the induced gene transcribes faster than the
transfection marker’s gene (see Figure 4(b)).
In summary, we have demonstrated two different physical

mechanisms that may induce a near-constant level of the
induced gene reporter at low plasmid copy numbers (high
translation rates or low transcription rates). We thank a
reviewer for pointing out another possible mechanism; that
flow cytometry measurements at low plasmid copy numbers
are susceptible to experimental noise such as autofluorescence,
and instrumental limitations. In the absence of experimental
noise, but under our modeling assumptions, our stochastic
models demonstrate that even with linear production rates a
near-constant level of the induced gene reporter will be

observed at low plasmid copy number. This arises as the
normalized histograms of the plasmid encoding the trans-
fection marker within each of the leftmost bins had relatively
constant modes (see Figure S7 and Supporting Information
Section 2.3 for more details).
Our models also demonstrate two different physical

mechanisms that may induce a saturating level of induced
gene reporter for high plasmid copy numbers (having the
induced gene transcription kinetics saturate at lower plasmid
levels than needed for saturation of the transfection marker
gene transcription kinetics, or having translational saturation
with the induced gene transcribing faster than the transfection
marker’s gene). Note that the results we have derived do not
depend on the precise choice of bin width (see Figure S2 in
Supporting Information). In Supporting Information Section
2.2 we show that these results persist when considering an
alternative model for the initial plasmid distributions within
cells. In Supporting Information Section 1.2 we explain why
the observed saturation region at high plasmid copy number
within the flow cytometry data is unlikely to be due to
experimental noise.
Our analysis poses a challenge to the characterization of

circuit behavior in TTMC. The stochastic models demonstrate
there are multiple (physical) mechanisms that can explain the
observed saturation (constant levels) of the induced gene
reporter at high (low) plasmid copy numbers. Due to the
complexity of these models it seems unlikely one could fit
them, or even select which is most appropriate, from just
single-time-point flow cytometry data.

Bin-Dependent ODE Model. Though mechanistic details
cannot be disentangled from single-time flow cytometry
measurements, characterization of modules remains a critical
problem to be addressed. This is needed to enable the
development of models that can predict the dynamics of
circuits/pathways with more components, and which exhibit
more complicated behaviors. To further this goal, we now
develop a simple, phenomenological ODE model that can
accurately describe single-time transient transfection flow
cytometry data. While development of a more physically
detailed model would be ideal, as shown in the last subsection
it would require additional experimental data to be uniquely
determined.

Figure 4. Simulations of our stochastic model suggest that either saturation of transcriptional kinetics (a) or saturation of translation kinetics (b)
can lead to regimes where the induced gene reporter level saturates at high plasmid copy numbers. The x-axis and y-axis stand for number of
molecules of the transfection marker and the induced protein in each bin. Least squares regression lines are drawn for reference. (a) Comparison of
models built under the hypothesis of transcriptional saturation. The half saturation constant KDinduced

increases in order from 102 to 106 molecules,

and KDtm
is held fixed at 104 molecules. (b) Comparison of models built under the hypothesis of translational saturation. The transcriptional rate of

the induced gene decreases in order from 10 to 10−3 molecule per plasmid per hour, and the transfection marker transcribes at a constant rate of
10−1 molecule per plasmid per hour.
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To account for the observed saturation in protein
concentration, we propose replacing the traditional Hill-
function-based model (see Supporting Information Section
3) with a bin-dependent model. The bin-dependent model
divides flow cytometry data into two subsets based on plasmid
copy number, i.e., one with and one without saturation.
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(1)

where Ii and Oi are the concentrations of the input and the
output in the i-th bin, and i′ is the separating bin. The
separating bin is chosen to be the bin at which average
concentrations of the cotransfected protein switch from linear
growth to saturating growth. αi, the production rate of the
induced protein in the i-th bin, is assumed time-invariant
because Ii is induced by a constant concentration of inducer.
We do not explicitly characterize the functional form of how αi
depends on the plasmid level as we simply fit a different value
of αi for each bin. ϕ(t) captures that the population-average
plasmid counts decrease due to cell division over time.26 T is
length of the cell cycle; λI and λO are dilution/degradation
rates of I and O. β is the maximal average production rate of

the regulated protein for cells in the first bin, i.e., cells that have
minimal plasmid counts P1. Pi is the midpoint of the i-th
plasmid count bin. f and g capture the relationship between the
concentrations of the transfection marker and the maximal
production rates of the output protein for low and high copy
numbers, respectively. The bin-dependent model only requires
one additional parameter than a standard Hill-function-based
model (see Supporting Information Section 3).
We fit the traditional Hill-function-based model (see

Supporting Information Section 3) and the bin-dependent
model (eq 1) to the TAL14, TAL21, and LmrA data sets from
ref 26 for validation (TAL14, TAL21, and LmrA are names of
the repressors).26 Both models are simulated for 46 h since an
average delay of 25 h in plasmid expression is expected.26

Protein loss is assumed to arise purely from dilution, as both
the input and output proteins are very stable on the time scale
of the experiments.26 We therefore take λI = λO = λ, and
calculate them based on the length of the cell cycle, which
spans approximately 20 h.26 Davidsohn et al. constructed the
circuits using the rtTA and GAL4/UAS system: the input
(repressor) is activated by a constitutive rtTA protein and
doxycycline, and expression of the output (EYFP), which is
inhibited by the input, is driven by a constitutive Gal4
protein.26 A detailed representation of the circuit structure can
be found in Figure S1. rtTA and Gal4, which are indispensable
for protein activation, are both constitutively expressed and are
not considered as limiting factors for the production of the
input and the output. Omitting rtTA and Gal4 leads to an
abstraction of the circuit structure that can be studied by our
models, as is shown in Figure 1(a). For the bin-dependent
model, the bin that separates flow cytometry data into subsets
of fast and slow protein production is chosen to be 107.1 MEFL
for TAL14 and TAL21, and 107.4 MEFL for LmrA since in the
data set, saturation in protein production is observed to the
right of 107 MEFL and 107.3 MEFL, respectively (Figure 2).
Model fitting is implemented via minimizing the mean-squared

Figure 5. Comparison between experimental data and the traditional Hill-function-based TAL14, TAL21, and LmrA models. Plasmid copy number
is shown by color. Solid lines are experimental data, and dashed lines are model fits. The experimental data in the plots are from ref 26.

Figure 6. Comparison between experimental data and the bin-dependent TAL14, TAL21, and LmrA models. Plasmid copy number is shown by
color. Solid lines are experimental data, and dashed lines are model fits. The experimental data in the plots are from ref 26.
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errors (MSE) between the log of observed and predicted
concentrations of the regulated proteins (details of model
fitting can be found in Supporting Information Section 4). We
log-transform the concentrations to reduce the absolute errors
that are often associated with measurements of large protein
concentrations on a linear scale.49 For our specific
implementation, we use Matlab’s GlobalSearch algorithm to
locate the set of parameter values that produce the global
minimum error.50 The optimal parameter fits and the errors in
the fit models are shown in Tables S2 and S3 in Supporting
Information Section 5, and the fit model values versus the
experimental values of the fluorescent reporters are shown in
Figures 5 and 6. Our results suggest that the bin-dependent
model fits the data well for all plasmid copy numbers despite
having only one more parameter compared to the Hill-
function-based model (Table 1).

We further compare the Hill-function-based model and the
bin-dependent model via cross-validation. We conduct a 12-
fold cross-validation by randomly dividing the flow cytometry
data into 12 subsets of the same size, fitting the models
separately on each combination of 11 subsets, and then testing
the models on the single subsets that were left out.51 The
fitting errors and the testing errors are then averaged over the
12 combinations of subsets. Our results suggest that both the
fitting errors and the testing errors of the bin-dependent
models are 1.5−2 times better than those of the Hill-function-
based models (Tables 2 and 3). The bin-dependent model

shows a less significant improvement for LmrA than for TAL14
and TAL21. A possible explanation is that for LmrA, the
saturation effect is observed in six bins to the right of 107.3

MEFL rather than in nine bins to the right of 107 MEFL. For

each repressor, we choose the model that produces the least
testing error among 12 cross-validated models to be the best
model. We evaluate the best models for each plasmid copy
number. The results indicate that the bin-dependent models
produce not only lower but also more consistent errors across
all bins (Figure 7). The errors of the Hill-function-based
models get large near 107 MEFL and 107.8 MEFL for all
repressors. This signals that there are patterns in the data that
are not explained by the Hill-function-based models.52 The
bin-dependent model produces larger errors for LmrA than for
TALER repressors because there are slight indications of a
near-constant region at low plasmid numbers for LmrA (Figure
2). In summary, we find that the bin-dependent model
consistently provides significantly better fits to the exper-
imental data than the Hill-function-based model.
Note, for high-plasmid-count subsets, our bin-dependent

model assumes the log of the maximal protein production rate
is approximated as a linear function of the log of the
transfection marker. Although the relationship is arguably
better fit by other functions, our assumption leads to a model
with a good fit across the entire data set, while only requiring
one additional parameter.

Modular Composition. To validate the predictive power
of the bin-dependent model, we develop models for the six
two-repressor cascades and three of the feed-forward circuits
shown in ref 26 (for which we were given the experimental
data from ref 26). The exact structure of the cascades and the
feed-forward circuits can be found in Figures 3(A) and 5(A) of
ref 26 or Supporting Information Figures S1(b) and S1(c),
with Figures 8(a) and 10(a) providing abstractions that
highlight the key parts of the circuits. A two-repressor cascade
can be decoupled into two modules, with the output of the first
module acting as the input of the second module (Figure
8(a)). Similarly, a feed-forward circuit can be decoupled into
three modules (Figure 10(a)). The bin-dependent models for
cascades and feed-forward circuits are constructed, and their
agreement with experimental measurements are compared
with that of the Hill-function-based and the EQuIP models
developed in ref 26. Specifically, we compare simulations of the
circuit models to experimental data by measuring the
differences between simulated and observed concentrations
of EYFP 72 h post transfection (experimental data from ref
26). Full details of the experimental protocol can be found in
ref 26. The equations and parameters for the bin-dependent
models can be found in Supporting Information Section 6 and
8. The bin-dependent circuit models are developed by
composing together the individual module models that were
individually f it in the previous section. We do not ref it the
equations for each model to data for the complete two-module
cascades or three-module feed-forward circuits. In this way we
can assess how well models fit to individual modules can
predict circuit behavior when composed together. To offer a
comparable study to ref 26, we use the parameters Davidsohn
et al. fit for the Hill-function-based models for cascades.26 Hill-
function-based models for feed-forward circuits were not
studied in ref 26. We therefore construct Hill-function models
of feed-forward circuits by composing the parametrized Hill-
function models of individual modules developed in the
previous section.
Like most biological data, calibrated flow cytometry is

subject to batch effects. Parameters in the models of the
modules need to be rescaled so that they are brought to the
same scale before the models are connected into a circuit.

Table 1. MSE of the Models

goodness of fit

repressor Hill-function-based bin-dependent

TAL14 0.013 0.004
TAL21 0.015 0.005
LmrA 0.020 0.009

Table 2. Averaged Fitting Errors of the Models within the
12-Fold Cross-Validation

fitting errorsa

repressor Hill-function-based bin-dependent

TAL14 0.013 0.006
TAL21 0.017 0.009
LmrA 0.018 0.013

aSee Supporting Information Section 4 for the definition of fitting
errors.

Table 3. Averaged Testing Errors of the Models within the
12-Fold Cross-Validation

testing errorsb

repressor Hill-function-based bin-dependent

TAL14 0.014 0.007
TAL21 0.017 0.008
LmrA 0.019 0.013

bSee Supporting Information Section 4 for the definition of testing
errors.
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Rescaling is a two-step process, where systematic variation
between modules is first removed to facilitate modular
composition, and then reincorporated in the model to enable
a fair comparison between model predictions and experimental
data. The rescaling method we used can be found in
Supporting Information Section 6. Davidsohn et al. determined
the scaling factors among batches directly from experimental
data by comparing the means and the tightness of the data of
different batches for all the modules and cascades (note this
calculation does not rely on EQuIP).26 Values of the scaling
factors for each input protein I, output protein O, and
transfection marker can be found in Section 12 of the
Supporting Information of ref 26. We use these scaling factors
to rescale the parameters of the bin-dependent models since
rescaling in our context is first-order linear compensation,26 i.e.,
there is no difference between rescaling the parameters and
fitting the parameters to rescaled data. To understand the
effect of cross-batch compensation on model predictions, we

also rescale the parameters of the Hill-function models
provided in ref 26 by the same scaling factors. Since scaling
factors for both modules and cascades are provided in ref 26,
we perform both steps of rescaling amid construction of
cascade models. The equations and parameters for the bin-
dependent model and the rescaled Hill-function-based models
for the cascades can be found in Supporting Information
Section 6. For feed-forward circuits, we did not have
experimental data with which to calculate scaling factors, and
so we only performed parameter rescaling at the modular level.
The equations and parameters for the feed-forward circuits can
be found in Supporting Information Section 8.
The agreement between experimental measurements and

model predictions for the six cascades is illustrated in Figure 9
and the figures of Supporting Information Section 7. For all six
cascades, the bin-dependent model is able to capture the
positive association between the input and the output (Figure
9). It also captures the buffer-like behavior of the cascades; i.e.,

Figure 7. Testing errors of the best cross-validated models within each bin.

Figure 8. (a) Abstraction of the structure of the cascade. I1 inhibits I2/O1, which further inhibits O2. The expression of I2/O1 and O2 is driven by a
constitutive Gal4 protein and is omitted from the plot. The overlapping component of the modules is shown in the blended color. (b) Comparison
of the mean-fold errors of the Hill-function-based models, with and without rescaling,26 the bin-dependent models, and EQuIP26 for each cascade.
The experimental data the models are validated against are from ref 26. Numbers on top of the dotted lines represent the average mean-fold errors
of six cascades.

Figure 9. Comparison between experimental data and predictions made by the bin-dependent models for LmrA-TAL14 and LmrA-TAL21
cascades. Plasmid copy number is shown by color. Solid lines are experimental data, and dashed lines are model fits. Experimental data in the plots
are from ref 26.
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the dynamic range of the output is narrower compared to that
of the input due to low cooperativity of the regulatory modules
(Figure 9 and Supporting Information Section 7).53

To further investigate how well our composed circuit models
fit the experimental data, we examined the average mean fold
error, defined as the average over all six cascades of the mean-
fold errors over all induction levels of each individual cascade
(see Supporting Information Section 4 for details and
formulas). The rescaled bin-dependent model is found to
outperform the Hill-function-based model presented in ref 26,
with an average mean-fold error of 1.6 fold for the former vs
3.0 fold for the latter. The 1.6 fold average error of the bin-
dependent model also outperforms the average error of the
Hill-function model with rescaling, which was found to be 2.0
fold (Figure 8(b)). This indicates that inconsistent scales due
to batch effects contribute significantly to the magnitude and
the inconsistency of the errors. In addition, the rescaled bin-
dependent model also produces smaller mean-fold errors than
the rescaled Hill-function model for all individual cascades
(Figure 8(b)). In ref 54, we examined a different rescaled Hill-
function model, based on composing the Hill-function models
we parametrized for individual modules in the preceding
subsection. For this rescaled Hill-function model we observed
an average mean fold error of 1.8.54 As we fit the Hill-function
model using a different optimization routine than used in ref
26, this illustrates that the parameter estimation procedure can
also influence the relative accuracy of different models. Finally,
we note that the accuracy of the bin-dependent model varies
relative to EQuIP, achieving a smaller mean-fold error for some
cascades and larger error others (see Figure 8(b)). The average
over all six cascades is the same as EQuIP (1.6), which is
considered high accuracy based on results reported in the
literature.26,27,34,55,56

Besides cascades, the bin-dependent model also facilitates
relatively accurate predictions for feed-forward circuits. The
agreement between experimental measurements and model
predictions for the three feed-forward circuits is illustrated in
the figures of Supporting Information Section 9. The average
error over all three feed-forward circuits is the same as EQuIP
(2.0) and is much lower than the rescaled Hill-function-based
model (4.0) (Figure 10(b)). The bin-dependent model
captures the qualitative behavior of the circuitthe output is
weakly affected by a change in the input at low inducer levels
due to two opposing regulations: I1 −| O1 −| O2 and I3 −| O3,
and negatively associated with the input at high inducer levels

as inhibition becomes the dominant force. The relatively large
error for the TAL21-LmrA circuit is likely to be batch-specific,
as measurements of the output are below 104 MEFL at low
plasmid copy number (see Figure S10). Note, such low levels
of MEFL are not observed in any of the other circuit data sets.
Despite the relatively high accuracy of the bin-dependent

model, we note that the simplicity of its representation of the
gene expression process may in some contexts sacrifice
accuracy. Figure 9 shows an under-prediction for two out of
six cascades, the cause for which may be attributed to the non-
negligible amount of time over which transcription and
translation take place. The time lag between expression of
I2/O1 and O2 may be better captured by delay differential
equations (DDE).

■ CONCLUSIONS

We have developed a bin-dependent ODE model that
describes regulatory mechanisms via the use of standard Hill
function type terms, while offering comparable accuracy to the
EQuIP model of ref 26. Parameterized, bin-dependent models
of individual modules should be relatively straightforward to
integrate as subcomponents within larger existing ODE and
DDE models of circuits. Moreover, it should also be relatively
straightforward to modify a parametrized bin-dependent model
to incorporate additional, previously characterized regulatory
components (i.e., for studying promoters coregulated by
multiple transcription factors). In this way we expect that
bin-dependent models for individual modules should be able to
be composed with a variety of existing, well-characterized
differential equation models that describe components of
synthetic and systems biology networks.
Another benefit to the bin-dependent-model-based approach

is that it is fairly robust to sampling noise in experimental data.
The input−output data sets, which the ODE models are fit to,
comprise the geometric means of measured protein concen-
trations within each bin. These data points may not be well
separated, and hence appear noisy, when using sparse flow
cytometry data sets. The model fitting step helps overcome this
sampling noise by using deterministic ODEs based on widely
used biochemical relationships (such as Hill-functions).
The bin-dependent model presented here establishes a

framework for characterizing fundamental synthetic constructs
and predicting circuit behaviors quantitatively in TTMC. As
we demonstrated with the stochastic model, there are different
mechanisms that may contribute to saturation in protein

Figure 10. (a) Abstraction of the structure of the feed-forward circuit. I1 inhibits I2/O1, which further inhibits O2. I3 inhibits O3. The expression of
I2/O1 and O2/O3 is driven by a constitutive Gal4 protein and is omitted from the plot. The overlapping components of the modules are shown in
the blended colors. (b) Comparison of the mean-fold errors of the rescaled Hill-function-based models, the bin-dependent models, and EQuIP26

for each feed-forward circuit. The experimental data the models are validated against are from ref 26. Numbers on top of the dotted lines represent
the average mean-fold errors of three feed-forward circuits.
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production, a common phenomenon in TTMC. The value of
the bin-dependent model lies in both its easy integrability with
other differential equation models, and in its ability to describe
the saturation effect in flow cytometry data accurately without
specifying precise mechanistic details for how saturation
occurs. The method presented here should be applicable to
similar flow cytometry data sets, allowing the possibility to
construct a well-characterized library of in silico models for
regulatory switches. The quantitative parameters of such
regulatory switches could then be used in constructing new
predictive models for the behaviors of more complicated
circuits. Our work represents one more step toward building a
systematic workflow that can guide circuit design in TTMC.
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