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Abstract— We present a new average-based robustness for
Signal Temporal Logic (STL) and a framework for optimal
control of a dynamical system under STL constraints. By
averaging the scores of different specifications or subformulae
at different time points, our definition highlights the frequency
of satisfaction as well as how robustly each specification is sat-
isfied. Its usefulness in control synthesis problems is illustrated
through case studies.

I. INTRODUCTION

Formal methods have been recently used to express system
behavior under complex temporal requirements, verify whether
the system execution meets the desired requirements, or control
the system to satisfy desirable specifications [1]. Temporal
Logics including Linear Temporal Logics (LTL) [2], Metric
Temporal Logic (MTL) [3], Signal Temporal Logic (STL) [4]
and Time Window Temporal Logic (TWTL) [5] allow precise
description of system properties over time. STL is equipped
with qualitative and quantitative semantics, meaning that it not
only can assess whether the system execution meets the desired
requirements but also provides a measure of how well require-
ments are met, also known as robustness. As a result, STL has
been widely used for many control purposes including path
planning and motion planning [6], [7] or synthesis problems
[8]. Higher robustness score shows stronger satisfaction of the
desired specifications. Therefore, it is desirable to maximize
the robustness to improve system behavior satisfying desired
temporal specifications.

The traditional robustness introduced in [9] is non-convex
and non-differentiable; therefore, it is not possible to use pow-
erful optimization techniques to maximize it. Previous works
for control under STL constraints focused on using heuris-
tic algorithms or encoding constraints as Mixed Integer Lin-
ear Programming (MILP). Heuristic optimization approaches
such as Particle Swarm Optimization, Simulated Annealing
and Rapidly Exploring Random Trees (RRTs) were used for
synthesis, falsification and control problems [10], [11], [12].
Heuristic approaches do not require a smooth objective func-
tion; however, these algorithms do not always provide a guar-
antee to find the optima and have many user-defined parame-
ters that need to be set in advance. Encoding temporal logic
specifications as linear and boolean constraints was studied in
[13], [14] and MILP optimization solvers such as Gurobi were
used to solve the control synthesis problem. The most critical
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issue with MILPs is that they do not scale well as the number
of variables increases, resulting in an NP-complete problem.
Therefore, this approach could fail when solving problems with
many variables or complex temporal constraints. Moreover,
MILP implementations require all constraints (including the
system dynamics in the control problem) to be linear. As a
result, nonlinear dynamics must be linearized, if linearizable,
which involves approximation.

Recently, there have been efforts to smooth the robustness
function in order to use gradient-based optimization algo-
rithms. In [15], [16], authors used smooth approximations
of maximum and minimum functions to define a smooth ro-
bustness in order to solve a control problem. Even though
these works solved the non-differentiability issue, the resulting
smooth approximation had errors compared to the traditional
robustness, meaning that positive robustness did not necessarily
mean satisfaction of the specification unless it was greater
than a pre-defined threshold. The main drawback of these
works is that traditional robustness is defined by the most
critical point (most satisfaction or most violation). In [17],
authors defined average STL robustness for continuous-time
signals and defined positive and negative robustness to solve a
falsification problem. Authors in [18] described MTL as linear
time-invariant filters and used the average robustness for mon-
itoring purposes. [19] improved robustness for discrete signals
by defining Discrete Average Space Robustness, and removed
its nonsmoothness by approximating to a simplified version.
These works refined robustness only for temporal operators
while using traditional maximum and minimum functions for
other operators.

Our main contribution of this paper is proposing a new
average-based robustness, which we call Arithmetic-Geometric
Mean (AGM) robustness. This new quantitative semantics uses
arithmetic and geometric means to take into account the robust-
ness degrees for all the subformulae and at every time point,
and not just the most satisfying or violating ones. As a result,
our definition rewards policies that satisfy the requirements at
more time steps and with higher scores. We show that this
novel definition also provides a better margin in which the
specification is still satisfied when external disturbance or sys-
tem perturbation exists. The advantages of our new definition
are illustrated through case studies and compared to smooth
approximation and MILPs methods.

II. PRELIMINARIES

Let f ∶ Rn → R be a real function. We define [f]+ =
{f f > 0

0 otherwise
and [f]− = −[−f]+, where f = [f]+ + [f]−.
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A. Signal Temporal Logics (STL)

STL was introduced in [4] to monitor temporal properties
of real-valued signals. Consider a discrete time sequence τ ∶=
{tk∣k ∈ Z≥0}. A signal S is a function S ∶ τ → Rn that maps
each time point tk ∈ τ to an n-dimensional vector of real values
S[tk], with si being its ith component. Assume [a, b] is the set
of all tk ∈ τ starting from a up to b, with a, b ∈ τ ; b > a ≥ 0.
STL Syntax is defined as:

ϕ ∶= ⊺ ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1U[a,b]ϕ2, (1)

where ⊺ is the logical True, µ is a predicate, ¬, ∧ are the
Boolean negation and conjunction operators, respectively, and
U is the temporal until operator. Logical False is � ∶= ¬⊺.
Other Boolean and temporal operators are defined as ϕ1∨ϕ2 ∶=
¬(¬ϕ1 ∧ ¬ϕ2), F[a,b]ϕ ∶= ⊺U[a,b]ϕ, G[a,b]ϕ ∶= ¬F[a,b]¬ϕ.
The temporal operator Finally or eventually (F[a,b]ϕ) states
that “at some time point in [a, b] the specification ϕ must be
True”; while globally or always (G[a,b]ϕ) states that “ϕ must
be True at all times in [a, b]”. The until operator (ϕ1U[a,b]ϕ2)
states that “ϕ2 must become True at some time point within
[a, b] and ϕ1 must be always True prior to that”. STL qual-
itative semantics shows whether a signal S satisfies a given
specification ϕ at time t, i.e., S[t] ⊧ ϕ or not, i.e., S[t] ⊭ ϕ,
and its quantitative semantics, known as robustness, measures
how much the specification is satisfied or violated. We denote
the robustness for a specification ϕ with respect to signal S
at time t as ρ(ϕ,S, t) and refer to it as traditional robustness.
For details on calculating traditional robustness, please refer
to [9]. In [15], [16], the non-differentiable min and max
functions in the traditional robustness are replaced by smooth
approximations, to which we refer as approximation robustness
ρ̃. For all robustness definitions, when time is not mentioned,
satisfaction at time 0 is considered.

III. PROBLEM STATEMENT

Consider a discrete-time dynamical system given by:

q[k + 1] = f(q[k], u[k]),
q[0] = q0,

(2)

where q[k] ∈ Q ⊆ Rn is state of the system and u[k] ∈
U ⊆ Rm is control input at kth time step k ∈ Z≥0; q0 ∈ Q
is the initial state and f is a function representing the dynamics
of the system. Given the initial state q0 and control sequence
u = {u[0]u[1]...}, system trajectory q = {q[0]q[1]q[2]...} is
generated using (2); which we denote by ⟨q, u⟩. Consider a cost
function J(u[k], q[k+1]) representing the cost of applying the
control input u[k]. Assume system temporal requirements are
given by a STL formula φ with a time horizon T , which is the
largest time step for which signal values are needed in order to
compute the robustness for the current time point. The control
synthesis problem can be formulated as determining a control
policy u∗ = {u∗[0]u∗[1]...u∗[T − 1]} such that the system
trajectory satisfies the STL specification φwhile optimizing the
associated cost:

u∗ = argminu
T−1
∑
k=0

J(u[k], q[k + 1]),

s.t. ⟨q, u⟩ ⊧ φ.
(3)

Previous works used heuristic algorithms, MILP encoding, and
gradient ascent to optimize (3) based on traditional and smooth
robustness scores. The main shortcoming of the traditional
robustness is that it only considers the robustness of the most
satisfying or violating part of the specification. We address this
limitation by defining a new version of robustness.

IV. ARITHMETIC-GEOMETRIC MEAN (AGM)
ROBUSTNESS

We define a novel robustness η based on arithmetic and
geometric means instead of the max and min functions in
the traditional definition. We show that our normalized signed
robustness η ∈ [−1,1] provides a better understanding of
system properties, where η ∈ (0,1] corresponds to satisfaction
of the specification, η ∈ [−1,0) shows violation, and η = 0
indicates inconclusiveness. Moreover, ∣η∣ is a measure of how
well the specification is satisfied or violated.

Consider a discrete time series τ ∶= {tk∣k ∈ Z≥0}. Signal S
is a function S ∶ τ → Rn that maps each time point tk ∈ τ to
an n-dimensional vector of real values S[tk], with si being its
ith element. Throughout the definitions and proofs, we assume
that we have bounded signals, and all their components are
normalized to the interval [−1,1].

Definition 1 (AGM Robustness): Let S ∶ τ → [−1,1]n and
ϕ ∶ si − π ≥ 0 where π ∈ [−1,1]. The normalized signed AGM
robustness η(ϕ,S, t) with respect to the signal S at time t is
defined as:

η(⊺, S, t) ∶= 1

η(ϕ,S, t) ∶= 1

2
(si[t] − π),

η(¬ϕ,S, t) ∶= −η(ϕ,S, t).

(4)

For combination of other boolean and temporal operators in
a time interval [a, b], AGM robustness is recursively defined
using (5) and (6), where [a, b] = {tk∣tk, a, b ∈ τ ;a ≤ tk ≤
b; b > a ≥ 0} and N is the number of time points in [a, b].
Algorithms 1-4 determine satisfaction or violation of the spec-
ification with respect to the signal S, as well as the normalized
signed AGM robustness.

Theorem 1 (Soundness): The AGM robustness is sound,
meaning that a trajectory with strictly positive robustness is sat-
isfying the specification, and a trajectory with strictly negative
robustness is violating it:

η(ϕ,S, t) > 0⇔ ρ(ϕ,S, t) > 0⇒ S ⊧ ϕ,
η(ϕ,S, t) < 0⇔ ρ(ϕ,S, t) < 0⇒ S /⊧ ϕ.

(7)

Due to brevity, all proofs are omitted, but can be found in [20].
Proposition 1: Let S be a signal and φ a STL formula. If

η(φ,S, t) = 1, then η(ϕ,S, tk) = 1 , similarly, if η(φ,S, t) =
−1, then η(ϕ,S, tk) = −1 for all subformulae ϕ of φ and
appropriate times tk as given by (5), (6).

A. Performance Properties

Property 1 (Smoothness and Gradient): The AGM robust-
ness η(φ,S, t) is smooth in S ∈ [−1,1]n almost everywhere
except on the satisfaction boundaries ρ(ϕ,S, tk) = 0, where
ϕ is a subformula of φ, and appropriate times tk as given
in (5) and (6). Moreover, the gradient of η with respect to
the elements of S that are part of φ’s predicates is non-zero
wherever it is smooth.

1691

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:49:53 UTC from IEEE Xplore.  Restrictions apply. 



η(ϕ1 ∧ ... ∧ ϕm, S, t ∣ ∀i ∈ [1, ...,m] . η(ϕi, S, t) > 0) ∶= m

√
∏

i=1,...,m
(1 + η(ϕi, S, t)) − 1

η(ϕ1 ∨ ... ∨ ϕm, S, t ∣ ∃i ∈ [1, ...,m] . η(ϕi, S, t) > 0) ∶= 1
m ∑
i=1,...,m

[η(ϕi, S, t)]+

η(G[a,b]ϕ,S, t ∣ ∀t′k ∈ [t + a, t + b] . η(ϕ,S, t′k) > 0) ∶= N

√

∏
t′
k
∈[t+a,t+b]

(1 + η(ϕ,S, t′k)) − 1

η(F[a,b]ϕ,S, t ∣ ∃t′k ∈ [t + a, t + b] . η(ϕ,S, t′k) > 0) ∶= 1
N ∑
t′
k
∈[t+a,t+b]

[η(ϕ,S, t′k)]+

(5)

η(ϕ1 ∧ ... ∧ ϕm, S, t ∣ ∃i ∈ [1, ...,m] . η(ϕi, S, t) ≤ 0) ∶= 1
m ∑
i=1,...,m

[η(ϕi, S, t)]−

η(ϕ1 ∨ ... ∨ ϕm, S, t ∣ ∀i ∈ [1, ...,m] . η(ϕi, S, t) ≤ 0) ∶= − m

√
∏

i=1,...,m
(1 − η(ϕi, S, t)) + 1

η(G[a,b]ϕ,S, t ∣ ∃t′k ∈ [t + a, t + b] . η(ϕ,S, t′k) ≤ 0) ∶= 1
N ∑
t′
k
∈[t+a,t+b]

[η(ϕ,S, t′k)]−

η(F[a,b]ϕ,S, t ∣ ∀t′k ∈ [t + a, t + b] . η(ϕ,S, t′k) ≤ 0) ∶= − N

√

∏
t′
k
∈[t+a,t+b]

(1 − η(ϕ,S, t′k)) + 1

(6)

Algorithm 1: AGM ROBUSTNESS FOR AND

Input: STL Formula φ = ϕ1 ∧ ϕ2 ∧ ...ϕm; Signal S
Output: AGM Robustness η(φ,S)

1 Find η(ϕi, S) for i = {1,2, ...,m} using (4);
2 If ANY (η(ϕi, S) ≤ 0), then S ⊭ φ,

η(φ,S∣S ⊭ φ) ∶= 1
m ∑
i=1,...,m

[η(ϕi, S)]−;

3 Else: S ⊧ φ,
η(φ,S∣S ⊧ φ) ∶= m

√
∏

i=1,...,m
(1 + η(ϕi, S)) − 1.

Algorithm 2: AGM ROBUSTNESS FOR OR

Input: STL Formula φ = ϕ1 ∨ ϕ2 ∨ ...ϕm; Signal S
Output: AGM Robustness η(φ,S)

1 Find η(ϕi, S) for i = {1,2, ...,m} using (4);
2 If ANY (η(ϕi, S) > 0), then S ⊧ φ,

η(φ,S∣S ⊧ φ) ∶= 1
m ∑
i=1,...,m

[η(ϕi, S)]+;

3 Else: S ⊭ φ,
η(φ,S∣S ⊭ φ) = − m

√
∏

i=1,...,m
(1 − η(ϕi, S)) + 1.

Algorithm 3: AGM ROBUSTNESS FOR GLOBALLY

Input: STL Formula φ =G[a,b]ϕ; Signal S
Output: AGM Robustness η(φ,S)

1 Find η(ϕ,S[t′k]) for time points t′k ∈ [a, b] using (4);
2 If ANY (η(ϕ,S[t′k]) ≤ 0), then S ⊭ φ,

η(φ,S∣S ⊭ φ) ∶= 1
N ∑
t′
k
∈[a,b]

[η(ϕ,S[t′k])]−;

3 Else: S ⊧ φ,

η(φ,S∣S ⊧ φ) ∶= N

√

∏
t′
k
∈[a,b]

(1 + η(ϕ,S[t′k])) − 1.

Property 2 (Arithmetic and Geometric Means):
Comparison between traditional and AGM robustness
demonstrates the advantage of our average-based definition.
Consider a signal S ∈ [0,1] and three subformulae ϕ1, ϕ2, ϕ3

Algorithm 4: AGM ROBUSTNESS FOR EVENTUALLY

Input: STL Formula φ = F[a,b]ϕ; Signal S
Output: AGM Robustness η(φ,S)

1 Find η(ϕ,S[t′k]) for time points t′k ∈ [a, b] using (4);
2 If ANY (η(ϕ,S[t′k]) > 0), then S ⊧ φ,

η(φ,S∣S ⊧ φ) ∶= 1
N ∑
t′
k
∈[a,b]

[η(ϕ,S[t′k])]+ ;

3 Else: S ⊭ φ,

η(φ,S∣S ⊭ φ) ∶= − N

√

∏
t′
k
∈[a,b]

(1 − η(ϕ,S[t′k])) + 1.

with ρ(ϕ1, S) = ρ(ϕ2, S) = η(ϕ1, S) = η(ϕ2, S) = 1 and
ρ(ϕ3, S) = η(ϕ3, S) = 0.2. While traditional robustness uses
max function and returns ρ(ϕ1 ∨ ϕ2, S) = ρ(ϕ1 ∨ ϕ3, S) = 1;
AGM definition returns η(ϕ1 ∨ ϕ3, S) = 0.6, which is
positive showing that the specification is satisfied, but
the robustness is less than 1 (highest satisfaction), which
is attainable only when both subformulae are maximally
satisfied, i.e., η(ϕ1 ∨ ϕ2, S) = 1. We now assume
ρ(ϕ1, S) = ρ(ϕ2, S) = η(ϕ1, S) = η(ϕ2, S) = 0.2 and
ρ(ϕ3, S) = η(ϕ3, S) = 1. While traditional robustness uses
min function and returns ρ(ϕ1∧ϕ2, S) = ρ(ϕ1∧ϕ3, S) = 0.2;
AGM definition returns η(ϕ1 ∧ϕ2, S) = 0.2, which is positive
showing the specification is satisfied, but the score is less than
η(ϕ1 ∧ ϕ3, S) = 0.55, which shows a stronger satisfaction.
For temporal operators, we first examine traditional and AGM
robustness for φ1 = F[1,4](S > 0.5). Using max function
in the traditional definition, ρ(φ1, Si) = 0.5 for i = 1,2,3
in Fig. 1 (Left). However, AGM robustness takes a time
average over the formula horizon considering all the times the
predicate is satisfied; therefore, it returns higher robustness
η(φ1, S1) = 0.5 for S1 and lower robustness η(φ1, S2) = 0.25
and η(φ1, S3) = 0.125 for S2,S3, respectively. Basically,
AGM robustness for F[a,b]ϕ can be interpreted as “eventually
satisfy ϕ with the maximum possible satisfaction as early as
possible and for as long as possible”. For signals in Fig. 1
(Right) and φ2 = G[0,4](S > 0.5), traditional robustness with
min function returns ρ(φ2, S1) = 0.5 for S1, while giving
same robustness ρ(φ2, Si) = 0.1 for S2, S3. On the other hand,
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Fig. 1. Signals for traditional and AGM robustness comparison.

AGM definition calculates η(φ2, S1) = 0.5 for S1, and lower
scores η(φ2, S2) = 0.41 for S2 and η(φ2, S3) = 0.1 for S3.
Thus, the AGM definition for G[a,b]ϕ can be interpreted as
“always satisfy ϕ with the maximum possible satisfaction for
all time points in [a, b]”.

Property 3 (Performance Under Disturbance): The AGM
robustness provides a better satisfaction margin in the presence
of disturbance. Consider the specification φ3 = F[1,4](S > 0.9)
and signals S1, S3 in Fig. 1 (Left), satisfying φ3 with same
traditional and AGM robustness ρ(φ3, S3) = η(φ3, S1) = 0.1.
In traditional robustness definition, S3 only satisfies φ3 at
a single time point, i.e., at t = 1 with ρ(φ3, S3[1]) = 0.1;
while for S1 to have the same score using AGM robustness,
η(φ3, S1[tk]) = 0.1 for all tk ∈ [1,4]. It can be easily shown
that applying any disturbance d > 0.1 at t = 1 to S3 results in
violation of φ3. However, φ3 is still satisfied in S1 under the
same disturbance d, although the satisfaction would become
weaker. Therefore, at a same score for the traditional and AGM
robustness, satisfaction would hold for larger disturbance using
the AGM definition.

B. Normalization
The normalization is not restrictive but is desired to provide

a meaningful understanding about satisfaction or violation of
a specification, especially when comparing robustness in a
formula with predicates defined over different properties or
scales. Consider the following specification:

ϕ1 = xR > 5, ϕ2 = Battery > 30, φ = ϕ1 ∧ ϕ2.

xR ∈ [0,10] is robot position and Battery ∈ [0,100] shows its
battery level. Without normalization, at xR = 6, Battery = 80,
robustness ρ(ϕ1, xR) = 1 and ρ(ϕ2,Battery) = 50. Since
the variables are in different scales, unnormalized robustness
ρ is not a meaningful measure of the specification φ, i.e.,
we have ρ(φ, (xR,Battery)) = 1 for xR = 6, and any
Battery = {31,32, ...,100}. Therefore, not only normalization
is not limiting, but is actually essential in practice.

V. CONTROL USING THE AGM ROBUSTNESS
To solve the control synthesis problem (3), we need to

find trajectories which satisfy the specification φ. A positive
robustness provides a margin in which any perturbation up to η
does not change satisfaction of the specification. Therefore, we
can maximize robustness over all possible control inputs to find
not just a satisfying trajectory, but one that has the strongest
satisfaction of the specification:

u∗ = argmaxu η(φ, ⟨q, u⟩)
s.t. η(φ, ⟨q, u⟩) > 0.

(8)

Assume the system dynamics f in (2) is smooth. Based on
Property 1, we can use advanced optimization algorithms such

as gradient ascent techniques to maximize the AGM robustness
η, rather than using heuristic methods or MILP encoding. Gra-
dient ascent is an iterative optimization algorithm for finding
maximum of a function F (x) by taking steps proportional to
its gradient at each iteration i:

xi+1 ← xi + αi ∇F, (9)
where ∇F = ∂F

∂x and α is step size. Despite heuristic opti-
mization algorithms which have so many parameters to be set,
gradient methods only need to tune the step size α. Due to non-
smoothness in η at the satisfaction boundaries, we use proximal
stochastic gradient ascent or sub-gradient ascent method with
diminishing step size [21]. To initialize gradient ascent, a
random control input sequence u0 ∈ U is generated, and the
resulting trajectory starting from initial state q0 is found using
system dynamics, which may violate the state constraints or
STL specification. The gradient ascent optimization then finds
optimal control policy u∗ which maximizes AGM robustness
function η for given STL constraints φ with respect to the
system execution ⟨q, u⟩. Combining (8) and (3), we can solve
a relaxed problem in which we maximize the robustness as
much as possible as well as minimizing the penalized cost. The
combined fitness function is defined as:

u∗ = argmaxu(η(φ, ⟨q, u⟩) − λ
T−1
∑
k=0

J(u[k], q[k + 1])),

s.t. η(φ, ⟨q, u⟩) > 0,
q[k + 1] = f(q[k], u[k]),

q[0] = q0,
q[k] ∈Q ⊆ Rn,
u[k] ∈U ⊆ Rm,

(10)
where λ penalizes the trade-off between maximizing robust-
ness to get the highest STL satisfaction and minimizing the
associated cost. Assuming the cost function J is also smooth,
gradient ascent can be used to solve the constrained nonlinear
optimization problem (10).

VI. CASE STUDIES
We show the applicability and efficacy of our framework for

control synthesis problems in linear and nonlinear systems with
and without external disturbance, and compare our results with
traditional and approximation robustness. To emphasize the
differences between the proposed robustness and the traditional
and approximation ones, we set λ = 0 in (10). Gradient ascent
simulations are coded in MATLAB and MILP is implemented
in Gurobi. Maximum number of iterations for gradient ascent
is set to 300.

A. AGM Robustness Versus Traditional Robustness
Example 1: Consider a nonholonomic dynamical system:

x[k + 1] = x[k] + cos θ[k]v[k],
y[k + 1] = y[k] + sin θ[k]v[k],
θ[k + 1] = θ[k] +w[k],

(11)

and the desired task “Always stay in the Init for 5 steps and
eventually visit Reg1 between [6,10] steps and eventually visit
Reg2 between [11,15] steps and Always avoid Obs”, formally
specified as STL formula:

φ1 = (G[1,5] Init) ∧ (F[6,10] Reg1)
∧ (F[11,15] Reg2) ∧ (G[0,15] ¬Obs), (12)
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Fig. 2. Trajectories with same maximum traditional robustness ρ = 1.
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Fig. 3. Trajectory with positive AGM robustness η = 0.138 (Left) and
after more gradient ascent iterations with η = 0.144 (Right).

where state vector q = [x, y, θ] indicates the robot position and
orientation and u = [v,w] is the input vector.

To maximize the traditional robustness ρ using the MILP
implementation, we need to linearize the dynamics. We use
feedback linearization to convert the nonlinear dynamics (11)
in to a discrete double integrator dynamics [14]. By linearizing
dynamics, we can only control x and y directly and robot
orientation θ is controlled indirectly. Two optimal trajectories
maximizing traditional robustness for the linearized system
found by Gurobi with same maximum traditional robustness
ρ = 1 are shown in Fig. 2. The MILP implementation for STL
constraints in φ1 with time horizon T = 15 has 95 continuous
and 70 integer (binary) variables. It is shown in [15] that
MILP does not scale well with the number of integer variables.
Therefore, MILP is not applicable for complex specifications
with many ∨ and F operators (that must be encoded as binary
variables) and long time horizons.

We next maximize AGM robustness η for the nonlinear
dynamics (11) using gradient ascent. Fig. 3 shows two tra-
jectories satisfying STL constraints in φ1 obtained in different
iterations of gradient ascent. Although both methods generate
satisfying trajectories, our proposed approach generates a more
smooth trajectory by controlling both robot position and orien-
tation. Moreover, maximum traditional robustness using MILP
is obtained when trajectory visits each region with maximum
robustness at a single time point (Reg1 at t = 10, Reg2 at
t = 15) without rewarding the frequency of satisfaction while
using the AGM robustness, trajectory with higher robustness
visits Reg1 as early as possible and for as long as possible
(t = 9,10); with all subformuale having maximum possible
robustness (trajectory is toward the center of regions) while
always avoiding obstacle.

B. AGM Robustness Versus Approximation Robustness
In [15] authors used Sequential Quadratic Programming

(SQP) on the smooth approximation robustness ρ̃ of MTL
specifications and showed it was more time efficient than MILP
approach. However, smooth approximation was within a pre-
defined error δ of the traditional robustness, i.e., ∣ρ − ρ̃∣ ≤ δ.
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Fig. 4. Trajectory with positive approximation robustness ρ̃ = 0.424 (ρ =
0.461) (Left) and after more iterations ρ̃ = 0.731 (ρ = 0.778) (Right)
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Fig. 5. Trajectory with positive AGM robustness η = 0.130 (Left) and
after more gradient ascent iterations with η = 0.171 (Right).

As a result, a positive approximation robustness ρ̃ did not
necessarily correspond to a trajectory satisfying the specifica-
tion and it was required to add ρ̃ ≥ δ as a constraint in the
optimization problem. We compare the results for maximizing
approximation robustness ρ̃ and AGM robustness η and show
the advantage of our approach, both in accuracy (removing
errors due to soft minimum/maximum approximations) and
satisfaction performance.

Example 2: Consider the nonlinear dynamical system:

x[k + 1] = x[k] + cos θ[k]v[k],
y[k + 1] = y[k] + sin θ[k]v[k],
θ[k + 1] = θ[k] + v[k]w[k],

(13)

and the desired task “Eventually visit Reg1 or Reg2 between
[1,5] steps and eventually visit Reg3 between [6,10] steps
and Always avoid Obs”, formally specified as STL formula:

φ2 = (F[1,5] (Reg1 ∨ Reg2)) ∧ (F[6,10] Reg3)
∧ (G[0,10] ¬Obs). (14)

Fig. 4 and Fig. 5 show trajectories satisfying STL constraints
in φ2 obtained using gradient ascent maximizing the approx-
imation robustness ρ̃ and the AGM robustness η, achieved
up to the termination criteria. Although both methods gener-
ate trajectories satisfying specification φ2, the trajectory with
higher approximation robustness visits Reg1 (t = 4) and Reg3
(t = 10) at a single time point while using the AGM robustness,
trajectory with higher robustness visits Reg1 (t = 3,4) and
Reg3 (t = 8,9,10) as early as possible and for as long as
possible; forcing trajectory to move toward the center of each
region while always avoiding the obstacle. Note that due to
the approximation errors resulted from approximating max
and min functions, traditional robustness ρ and approximation
robustness ρ̃ have different values for the same trajectory.

C. Performance Under Disturbance

We demonstrate the advantage of maximizing the AGM
robustness, rather than the traditional robustness, in a control
synthesis problem under external disturbance.
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Fig. 6. Trajectories with maximum approximation robustness ρ̃ = 0.292
(ρ=0.5) (Left) and positive AGM robustness η = 0.173 (Right).
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Fig. 7. A trajectory generated by disturbed u∗ρ̃ violating φ3 with negative
approximation robustness ρ̃ = −0.123 (ρ = −0.083) (Left) and by disturbed
u∗η satisfying φ3 with positive AGM robustness η = 0.166 (Right).

Example 3: Consider a linear dynamical system:

x[k + 1] = x[k] + ux[k],
y[k + 1] = y[k] + uy[k], (15)

where q = [x, y] is the state vector indicating robot position and
u = [ux, uy] is the input. The desired task is “Eventually visit
Reg1 between [1,5] steps and eventually visit Reg2 between
[6,10] steps”, formally specified as STL formula:

φ3 = (F[1,5] Reg1) ∧ (F[6,10] Reg2). (16)
We first find control policies u∗ maximizing ρ̃ and η using
gradient ascent. Optimal trajectories satisfying the specification
φ3 are shown in Fig. 6. It is clear that maximum approximation
robustness ρ̃ is achieved when center of each region is visited
at a single time (Reg1 at t = 3, Reg2 at t = 6). However, by
maximizing the AGM robustness η, not only the center of each
region (maximum satisfaction) is visited at least once, but also
each region is visited for more time points (Reg1 at t = 3,4,
Reg2 at t = 7,8,9). Next, we perturb system by adding a
gaussian noiseN(0, σ2) to the optimal control policies found:

u∗ρ̃ ← u∗ρ̃ +N(0, σ2),
u∗η ← u∗η +N(0, σ2) (17)

We apply the disturbed control policies (17) to the system (15)
and find resulting trajectories for different values of σ over 100
simulations. Results show that disturbed control policy found
by maximizing approximation robustness fails to satisfy the
specification in 58% of the times, while by maximizing the
AGM robustness, specification fails for an average of 41%. Fig.
7 (Left) illustrates a resulting trajectory by applying disturbed
optimal policy u∗ρ̃ violating φ3; and (Right) a resulting trajec-
tory by applying disturbed optimal policy u∗η , still satisfying
φ3 but at different time points and with a smaller robustness η.
Therefore, empirically, the control policy found by maximizing
the AGM robustness performs better when disturbance is added
after designing the control input.

VII. CONCLUSION AND FUTURE WORK
We presented a novel average-based robustness for STL by

considering not just the critical subformula or critical time

point but all subformulae at all appropriate time points. We
demonstrated that AGM robustness provides a better score in
control problems compared to the traditional score. We also
showed that empirically, system under external disturbance
has on average a better performance when maximizing AGM
robustness rather than the traditional one.
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[13] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control, Dec 2014, pp. 81–87.

[14] S. Saha and A. A. Julius, “An MILP approach for real-time optimal
controller synthesis with metric temporal logic specifications,” in
American Control Conference (ACC). IEEE, 2016, pp. 1105–1110.

[15] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in IEEE Conference on
Control Technology and Applications (CCTA), 2017, pp. 1235–1240.

[16] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic
specified reinforcement learning tasks,” in Annual American Control
Conference (ACC). IEEE, 2018, pp. 240–245.

[17] T. Akazaki and I. Hasuo, “Time robustness in mtl and expressivity in
hybrid system falsification,” in International Conference on Computer
Aided Verification. Springer, 2015, pp. 356–374.

[18] A. Rodionova, E. Bartocci, D. Nickovic, and R. Grosu, “Temporal
Logic as Filtering,” in 19th International Conference on Hybrid
Systems: Computation and Control. ACM, 2016, pp. 11–20.

[19] L. Lindemann and D. V. Dimarogonas, “Robust control for signal
temporal logic specifications using discrete average space robustness,”
Automatica, vol. 101, pp. 377–387, 2019.

[20] N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-Geometric Mean
Robustness for Control from Signal Temporal Logic Specifications,”
2019 American Control Conference(ACC), philadelphia, USA, (Ac-
cepted) available at: https://arxiv.org/abs/1903.05186.

[21] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

1695

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:49:53 UTC from IEEE Xplore.  Restrictions apply. 


