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Abstract— This paper investigates the problem of deploying
a multi-robot team to satisfy a syntactically co-safe Truncated
Linear Temporal Logic (scTLTL) task specification via multi-
agent Reinforcement Learning (MARL). Due to the heteroge-
neous agents considered here, typical approaches cannot avoid
the task assignment problem, which is inherently difficult and
can sacrifice optimality (e.g., shortest path) through manual
manipulation. scTLTL is exploited here to eliminate the task
assignment as part of the learning process. MARL usually
requires some direct or indirect coordination among agents
to promote convergence and a tracker is needed to track
the progress of satisfying the scTLTL specification given its
temporal nature. We use the Finite State Automaton (FSA) to
address these two issues. An FSA augmented Markov Decision
Process (MDP) is constructed with each agent sharing the
FSA state carrying the global information. Moreover, a metric
called robustness degree is employed to replace the Boolean
semantics and quantify the reward of gradually satisfying the
scTLTL. Consequently, a language guided semi-decentralized
Q-learning algorithm is proposed to maximize the return over
the FSA augmented MDP. Simulation results demonstrate the
effectiveness of the semi-decentralized multi-agent Q-learning
while the complexity is significantly reduced.

I. INTRODUCTION

Due to the insufficiency of a single robot, multi-robot
team is pervasively deployed to accomplish tasks cooper-
atively, including but not limited to coverage, exploration
and mapping [1], [2]. For tasks with complex structure and
long horizons, formal specification languages, particularly
temporal logics (TL) are commonly used as the task speci-
fication language due to its expressiveness and computable
semantics. TL has found wide adoption in applications such
as [3]. This paper addresses the problem of deploying a
multi-robot team to satisfy a syntactically co-safe Truncated
Linear Temporal Logic (scTLTL) task specification.

Related works: With heterogeneous complementary
agents considered, task assignment is usually required to
allocate agents to accomplish certain sub-tasks they are
capable of. In a line of work in distributed sensing [4]–[6],
either sub-teams are determined a prior or an online sub-team
election is determined by controlling the agents to service
the nearest regions of interest to minimize cost. However,
manually tailored sub-team allocation will inevitably sacri-
fice optimality. Moreover, to satisfy the TL specification,
in [7], abstracted workspace with path satisfying the TL
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specification is generated via sampling-based algorithms.
While leveraged knowledge from the TL specification is
exploited to enhance efficacy, they do not consider known
environment abstractions and do not apply to multiple agents
cases. To avoid the sub-team selection for a multi-robot
team and achieve the optimal satisfaction of the scTLTL
specification, multi-agent reinforcement learning technique
is applied here.

One of the core issues in RL is the design of the reward
function and accurately incorporating task specifications into
the reward. If the reward is inappropriately chosen to capture
the semantics of complex task, the task might not be satisfied
even when the return is maximized [8]. Work in [9] trans-
forms the Boolean semantics of scTLTL into a continuous
quantitative semantics called robustness degree. It is well
suited to transform a TL formula into a real-valued reward
function.

In multi-agent reinforcement learning, centralized learn-
ing cannot avoid the curse of dimensionality and thus
arises the necessity of decentralized multi-agent learning.
The authors of [10] propose an algorithm for multi-agent
learning in a ”centralized training with decentralized execu-
tion” scheme. Coordination-free methods for decentralized
multi-agent learning assume that the optimal joint action
is unique [11], which, however, is barely the case. As
a result, coordination, either direct or indirect, is usually
required in multi-agent reinforcement learning to promote
convergence and optimality. The former includes coordi-
nation graphs [12] and using communication to negotiate
action choices [13], while the latter includes joint action
learners [14] and frequency maximum q-value heuristic [15].
In a word, the decentralized MARL algorithms require such
a coordinator. Moreover, due to the temporal nature of TL
tasks, the satisfaction of a given scTLTL is not only related
to the current joint agent states but also historical trajectory.
Work in [16] introduced the Finite State Automaton (FSA)
as a tracker to track the process of satisfying an scTLTL,
for a single agent. The automaton state carries the global
information which depends on the joint states of all the
agents operating cooperatively to satisfy a certain scTLTL.
As a result, the FSA can serve both to coordinate the agents
and track the satisfaction of the scTLTL.

Contribution: In this paper, we demonstrate the appli-
cability of FSA in guiding MARL problems under temporal
logic constraints. Specifically, we use the FSA to orchestrate
the reward distribution and track task satisfaction in a multi-
agent system. We propose a semi-decentralized Q-learning
method that maximizes the expected long-term return based
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on the FSA augmented MDP and show its advantage in
improved sample complexity and scalability over the cen-
tralized approach.

Structure: The rest of the paper is organized as follows.
Preliminary knowledge on (multi-agent) RL, TL and FSA are
briefly introduced in Section II. Detailed problem formula-
tion and the transformation via the quantitative robustness
degree and augmented MDP are presented in Section III.
Based on the augmented MDP, both centralized and semi-
decentralized Q-learning methods are proposed in Section
IV. Numerical simulation results are demonstrated in Section
V to validate the effectiveness of the algorithm and we
conclude the paper in Section VI with a few remarks.

II. PRELIMINARY

A. Multi-Agent Reinforcement Learning

We first start with the definition of Markov Decision
Process (MDP) with discrete state-action spaces.

Definition 1: The Markov decision process is a tuple
〈S,A, p, r〉 where S is the set of the agent state in the
environment, A is the set of agent actions, p : S × A ×
S → [0, 1] is the state transition probability distribution and
r : S ×A× S → R is the reward function.
At state sk with action ak taken, the agent will end up in
state sk+1 with probability p(sk, ak, sk+1). Correspondingly,
as the feedback of the current action from the environment,
the agent will receive a reward r(sk, ak, sk+1). Then the
agent’s goal is to find a optimal policy π∗ : S → A (or
π∗ : S ×A→ [0, 1] for stochastic policies) to maximize the
expected discounted return. Mathematically, it is expressed
as

π∗ = arg max
π

Eπ
[ T−1∑
t=0

γtr(st, ak, st+1)
]
, (2.1)

where γ ∈ (0, 1) is the discount factor and Eπ(•) is the
expectation operator over policy π. Moreover, finite horizon
is adopted here with T as the maximum time-steps of the
policy π. Moreover, the action-value function (Q-function)
Qπ : S × A → R is the expected return of a state-
action pair (s, a) under a given policy π, i.e., Qπ(s, a) =

Eπ
[∑T−1

t=0 γtr(st, ak, st+1)|s0 = s, a0 = a
]
. To maximize

the return, the agent can first calculate the optimal Q-
function, i.e., Q∗(s, a) = maxπ Q

π(s, a) and then choose
action for a given state s by the greedy policy as π(s) =
arg maxaQ

∗(s, a). While it is computationally intensive
to compute the Q-function directly, the Q-learning method
keeps interacting with the environment and get rewards to
estimate Q∗ iteratively as follows [17]

Q(sk, ak) := Q(sk, ak) (2.2)
+α[rk+1 + γmax

a′
Q(sk+1, a

′)−Q(sk, ak)],

where α ∈ (0, 1] is the learning rate. The sequence generated
in (2.2) is provably convergent to the optimal Q∗ under
certain conditions [17].

Subsequently, the definitions of multi-agent RL is pre-
sented as follows:

Definition 2: A stochastic game (SG) (Markov game) is
a tuple 〈N,S, {Ai}i∈N , p, {ri}i∈N 〉, where N = [1, . . . , n]
is the set of n agents, {Si}i∈N is the set of states, {Ai}i∈N
are the possible actions for n agents and thus lead to the
joint action set as the Cartesian product of the action sets
for each agent, i.e., A = ×ni=1Ai. Similar to the single agent
case, p : S×A×S → [0, 1] is the state transition probability
distribution and ri : S ×A×S → R,∀i ∈ N are the reward
function for the agents.
In the multi-agent case, for a certain agent, all the other
agents are also part of the environment. As a result, the
environment is no longer stationary. The state transition p,
agent reward ri and hence the return Ri all depend on the
joint action ak = [aT

1,k, . . . , a
T
n,k]T with ai,k ∈ Ai and

ak ∈ A. The joint policy π is formed by combining the single
agent policy πi : S × Ai → [0, 1]. The Q-function of each
agent Qπi : S×A→ R also depends on the joint action and is
conditioned on the joint policy. For a comprehensive survey
on multi-agent RL, interested readers are referred to [18].

B. Temporal Logic Rewards and Finite State Automata

A Truncated Linear Temporal Logic (TLTL) [9] formula
is defined over the predicate f(s) ≤ c, where f : Rn → R
is a function and c ∈ R is a constant. Derived from TLTL,
tasks considered here are specified via syntactically co-safe
Truncated Linear Temporal Logic (scTLTL). The scTLTL
specification has the following syntax

p := >|f(s) ≤ c| © p1|¬p1|♦p1|p1 ∧ p2|p1 ∨ p2|
p1 ⇒ p2|p1Up2|p1T p2, (2.3)

where > is the true boolean constant, ©(next), ♦ (even-
tually), U (until), T (then) are temporal operators, and
¬(negation/not), ∧ (conjunction/and), and ∨ (disjunction/or)
are Boolean connectives. Consider the example below. It
denotes that the trajectory of the state will eventually visit
p1 and p2 in this order.

Example 3: Consider the following scTLTL formula φ :=
♦p2 ∧ ¬p2Up1, where φ entails that eventually p2 is true
and p2 should not be true before p1 is true (sequencing).
Given a finite horizon state trajectory st:t+k :=
stst+1 . . . st+k, a quantitative metric ρ(st:t+k, φ) called ro-
bustness degree (or robustness in short) is employed here to
measure how a scTLTL formula is satisfied by st:t+k. Such
robustness degree can be recursively defined as

ρ(st:t+k,>) = ρmax (2.4)
ρ(st:t+k, f(s) ≤ c) = c− f(st)

ρ(st:t+k,¬φ) = −ρ(st:t+k, φ)

ρ(st:t+k, φ⇒ ψ) = max(−ρ(st:t+k, φ), ρ(st:t+k, ψ))

ρ(st:t+k, φ1 ∧ φ2) = min(ρ(st:t+k, φ), ρ(st:t+k, ψ))

ρ(st:t+k, φ1 ∨ φ2) = max(ρ(st:t+k, φ), ρ(st:t+k, ψ))

ρ(st:t+k,©φ) = ρ(st+1:t+k, φ), k > 0

(2.5)

where ρmax is the maximum robustness degree. A positive
robustness degree implies that a specification is satisfied
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and negative otherwise. Mathematically, ρ(st:t+k, φ) > 0⇒
st:t+k |= φ and ρ(st:t+k, φ) < 0⇒ st:t+k 6|= φ. Maximizing
the robustness degree can serve as medium to enforce the
satisfaction of the specification.

An FSA is commonly used to track the satisfaction of a
scTLTL formula on an automaton graph.

Definition 4: A finite state automata corresponding to
an scTLTL formula φ is defined as a tuple Aφ =
〈Qφ,Ψφ, q0, pφ,Fφ〉, where Qφ is a set of automaton states,
Ψφ is the set of input alphabet, q0 ∈ Qφ and Fφ ∈ Qφ are
the initial state and set of final states, respectively. Moreover,
pφ : Qφ × Qφ → [0, 1] is the conditional state transition
probability defined as

pφ(qj |qi) =

{
1 if ψqi,qj is true ,
0 otherwise,

(2.6)

where ψqi,qj ∈ Ψφ is the input that could facilitate transition
from the current state qi to the next state qj . Alternatively,
due to the definition of the robustness degree, pφ can also
be defined as

pφ(qj |qi, s) =

{
1 if ρ(s, ψqi,qj ) > 0,

0 otherwise.
(2.7)

Note that in (2.7), ψqi,qj is a predicate without any temporal
operators, the corresponding robustness degree is only evalu-
ate at current time step, i.e., ρ(st:t+k, ψqi,qj ) = ρ(st, ψqi,qj ).

The transition between a pair of FSA states is directed
and deterministic. For the directedness, it is intuitively un-
derstood that once an scTLTL specification is satisfied, it
cannot be undone. The transition probability in (2.6) and
(2.7) can be later integrated as part of an MDP transition.
Also, the temporal operator � (always) is neglected in (2.3)
in order to establish the connection between the scTLTL
and FSA. The transformation from an scTLTL formula to
an FSA can be carried out automatically with packages like
Lomap [19]. For the scTLTL formula in Example 3, the FSA
is illustrated in Fig. 1. The FSA has four automaton states
Qφ = {q0, q1, qf , qtrap}, where q0 is the initial state, qtrap is
the trap state denoting violation of the scTLTL, and the rest
are to track the progress of satisfying φ. Reaching the final
state qf ∈ Fφ indicates that the specification is satisfied. The
input alphabet Ψφ = {p1∧p2,¬p1∧¬p2,¬1∧p2,¬p1∧¬p2}.
Here the shorthand is used p2 = (p2 ∧ p1) ∨ (p2 ∧ ¬p1).

Fig. 1: Finite state automaton generated from formula φ :=
♦p2 ∧ ¬p2Up1.

III. PROBLEM FORMULATION

With a set of agents, the problem of interest here is to
generate a joint state trajectory in the multi-agent system
to satisfy an scTLTL specification φ. Mathematically, it is
defined as follows.

Problem 5: Consider a Markov game M =
〈N,S, {Ai}i∈N , p, {ri}i∈N 〉 as that in Definition 2
with unknown transition probability distribution. Find an
overall joint policy π∗φ = ×ni=1π

∗
i,φ with π∗i,φ as the policy

for agent i such that

π∗φ = arg max
πφ

Eπ
[
1
(
ρ(s0:T , φ) > 0

)]
, (3.8)

where 1
(
ρ(s0:T , φ) > 0

)
is an indicator function with value

1 if ρ(s0:T , φ) > 0 and 0 otherwise. Moreover, the joint
trajectory s0:T is defined as s0:T = ×ni=1s

(i)
0:T with s

(i)
0:T as

the trajectory of agent i.
Note that in N , the agent are heterogeneous, i.e., an agent
is only capable of a certain subset of tasks defined by φ1.
Instead of assigning sub-team of agents to fulfill the task,
we avoid this inherently difficult problem via appropriate
reward function. For example, consider a sub-task φ1 and
a set of agents N ′ ⊆ N , which are capable of φ1. Then
for φ1, ρ(s0:T , φ1) = maxi∈N ′

[
ρ(s

(i)
0:T , φ1)

]
. Intuitively,

it means that only those agents capable of φ1 can get
feedback (rewards) from visiting/accomplishing φ1 while
those incapable ones cannot. As a result, the learning process
will automatically choose a capable agent to accomplish such
a task in an optimal way.

Problem 5 is to find a policy, which generates a joint
state trajectory satisfying the scTLTL specification φ in
expectation. However, the satisfaction of an scTLTL depends
on all the historical states such that it is necessary to have an
extra state to track the process of satisfying φ. Consequently,
given the finite state automaton introduced in Section II-B,
we will integrate the automaton state into the MDP M. On
the other hand, as the FSA state depends on the states of
all of the agents, so it has the global information and thus
is a good candidate as the coordinator of the multi-agent
learning. Otherwise, without communication with each other,
each agent will simply learn their policy in a locally greedy
way without pursuing global optimality. As a result, such
disjoint local learning will either not converge due to the
non-stationarity of the environment or only lead to a sub-
optimum. Consequently, in the following, it is demonstrated
that how an augmented MDP is built combining M and Aφ
in Definition 4.

A. FSA Augmented MDP

Definition 6: Consider a Markov game M =
〈N,S, {Ai}i∈N , p, {ri}i∈N 〉 as that in Definition 2
and an FSA Aφ = 〈Qφ,Ψφ, q0, pφ,Fφ〉 as that in
Definition 4. Then the FSA augmented MDP is defined
as Mφ = 〈N, Ŝ, {Ai}i∈N , p̂(ŝ′|ŝ, a), {r̂i}i∈N ,Fφ〉, where
Ŝ = S ×Qφ. Moreover, as the transition probability from ŝ
to ŝ′ with action a taken, p̂(ŝ′|ŝ, a) is defined,

p̂(ŝ′|ŝ, a) = p((s′, q′)|(s, q), a) (3.9)
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=

{
p(s′|s, a) if pφ(q′|q, s) = 1

0 otherwise,

where pφ(q′|q, s) is defined in (2.7) and ŝ = (s, q). More-
over, r̂i : Ŝ×Ŝ → R is the FSA augmented reward for agent
i. For a fully cooperative multi-agent system, it is set that
r̂g = r̂1 = . . . r̂n and r̂g is defined as

r̂g(×ni=1ŝi,×ni=1ŝ
′
i) = ρ(×ni=1ŝ

′
i, D

q
φ) > 0, (3.10)

where Dq
φ =

∨
q′∈Ωq

ψq,q′ represents the disjunction of all
predicates guarding the transitions that originates from q and
are the (non-trap) automata states connected with q through
outgoing edges.
The reward function in (3.10) can effectively generate in-
trinsic rewards, which coincides well with the goal of the
original Problem 5. It is worth noting that r̂g(×ni=1ŝ,×ni=1ŝ

′)
get all the states of the agents involved and thus serves as a
global reward. However, in the system where the agents are
not fully cooperative or the cases where not new states from
all agents are available due to delay, the agent might calculate
its own local reward. Consequently, such local reward r̂j,l,
which only depends on its own state update, is defined as

r̂j,l(ŝj ×ni=1,i6=j ŝ
′
i,×ni=1ŝ

′
i) = ρ(×ni=1ŝ

′
i, D

q
φ) > 0, (3.11)

with Dq
φ defined identically as that in (3.10). With the reward

defined in (3.10) and (3.11), the learning process will drive
the multi-agent system out of the current automaton state into
the next one by maximizing the expected return. Eventually,
the system will arrive at the final state qf ∈ Fφ, which
indicates the satisfaction of theφ and thus solves Problem
5. Note that at if state s0:T leads the automata to transition
from q0 to qf , then ρ(s0:T , φ) > 0 which motivates (3.8) and
(3.11). Additionally, the FSA augmented MDP in Definition
6 can be built with any standard MDP and an scTLTL
and thus can be applied to a wide range of applications
expressible by scTLTL.

IV. FSA GUIDED MULTI-AGENT REINFORCEMENT
LEARNING

In this section, we will develop our method based on the
tabular Q-learning [17], however the ideas presented here
are extensible to the continuous case. We start with the
centralized Q-learning as a benchmark.

A. Centralized Q-Learning

In the centralized setting, slight modifications are made
to the original definition of the FSA augmented MDP.
Particularly, Mφ = 〈N, Ŝ, {Ai}i∈N , p̂(ŝ′|ŝ, a), r̂,Fφ〉, with
Ŝ = ×ni=1Si × Qφ, ŝ = ×ni=1si × qφ, a = ×ni=1ai, ai ∈ Ai
and r̂ = r̂1 = . . . r̂n. Then given (2.1), the goal of the
centralized Q-learning is to maximize the following expected
sum of discounted return

π∗φ = arg min
πφ

Eπφ
[ T−1∑
k=0

γtr̂(ŝk, ŝk+1)
]
, (4.12)

with the reward function r̂(ŝk, ŝk+1) defined in (3.10).
Standard Q-learning update is applied to the agent as

Q(ŝk, ak) = Q(ŝk, ak) (4.13)
+α[r̂k+1 + γmax

a′
Q(ŝk+1, a

′)−Q(ŝk, ak)].

In this case, there is only one pseudo agent, whose
state/action is the joint state/action of all of the n agents.
The environment is therefore stationary and will no longer
encounter possible divergence [17]. However, this centralized
Q-learning inevitably has the issue of ”curse of dimension-
ality”, as the dimension of the joint state/action space is
increasing exponentially with the agent number n.

B. Semi-Decentralized Q-Learning

The curse of dimensionality encountered by the cen-
tralized Q-learning motivates our development of a semi-
decentralized version of Algorithm 1. Instead of learning
jointly as an integrated pseudo agent with one Q table,
in the semi-decentralized setting, every agent has its own
learning process. For agent i, the FSA augmented MDP is
Mi,φ = 〈Ŝi, Ai, p̂(ŝ′i|ŝi, ai), r̂i,Fφ〉, with Ŝi = Si × Qφ,
ŝi = si× qφ, ai ∈ Ai. For each agent, we add the FSA state
as an extra dimension in the state space. As discussed before,
such FSA state possesses the global information and serves to
track the process of the multi-agent system in satisfying the
scTLTL task specification. In other words, it acts as a global
coordinator and thus the semi-decentralized Q-learning here
belongs to the category of direct coordination methods [18].
The interaction between the coordinator and the agents are
illustrated in Fig. 2. Agent i provides its own current state
ŝi = (si, q), then the coordinator will evaluate the next
state s′i as well as the FSA state q′ based on (2.6) or
(2.7). The communication graph here is a time-invariant star
graph as shown in Fig. 2. Note that synchronous learning is
implemented here such that all of the agents in the system
will share the identical FSA state. The global and local
reward r̂g and r̂i,l are evaluated according to (3.10) and
(3.11), respectively. The reward for the ith agent r̂i is set as
the weighted sum of the global and local rewards as follows

r̂i = wir̂g + (1− wi)r̂i,l, (4.14)

where wi ∈ (0, 1] as the weight coefficient for agent i.
It is worth noting that with wi = 1, the system is fully
cooperative, otherwise the agents are somewhat selfish as
they take their own reward into consideration. In the extreme
case where wi = 0,∀i ∈ N , the agents are greedily
maximizing only its own return and ignoring that of the
whole system. The coordination in that case is invalid and
thus divergence can be expected.

With the FSA augmented MDP for each agent defined, the
agent will try to maximize its own expected sum of return
as

π∗i,φ = arg min
πi,φ

Eπi,φ
[ T−1∑
k=0

γr̂i(ŝk, ŝk+1)
]
. (4.15)
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Fig. 2: Illustration of the interaction between the coordinator
and the agents.

Consequently, the Q-function update for each agent is

Qi(ŝi,k, ai,k) = Qi(ŝi,k, ai,k) (4.16)
+α[r̂i,k+1 + γmax

a′
Qi(ŝi,k+1, a

′)−Qi(ŝi,k, ai,k)].

The semi-decentralized Q-learning on multi-agent FSA aug-
mented MDP is summarized in Algorithm 1. Due to the
semi-decentralized nature of Algorithm 1, the size of the Q
table is linearly increasing with the agent number n, and thus
significantly reducing the memory and computing burden.

Algorithm 1 Semi-Decentralized Q-Learning on Multi-
Agent FSA Augmented MDP

1: Inputs: scTLTL task specification φ,
Ŝi, Ai, p̂(ŝ

′
i|ŝi, ai), r̂i,Fφ, learning rate α ∈ (0, 1],

discount factor γ ∈ (0, 1), training episode nE and
maximum training iterations in each episode ns.

2: Initialize: Initial states ŝi, randomly initialized Q-
function Qi

3: Outputs: Q-function and optimal policy π∗φ
4: Construct the FSA augmented MDP Mi,φ for each

agent.
5: for kE = 1 . . . ne do
6: for k = 1 . . . ns do
7: i) Take action for each agent as ai,k =

arg mina′ Qi(ŝi,k, a
′). ii) Get new state ŝi,k+1 through

p̂(ŝ′i|ŝi, ai). iii) Evaluate Global and local reward r̂g and
r̂i,l are evaluate according to (3.10) and (3.11), and then
get r̂i based on (4.14).

8: for each agent i ∈ N do
9: Do the Q-function update

Qi(ŝi,k, ai,k) = Qi(ŝi,k, ai,k) (4.17)
+α[r̂i,k+1 + γmax

a′
Qi(ŝi,k+1, a

′)−Qi(ŝi,k, ai,k)].

10: end for
11: if qk+1 ∈ Fφ then
12: break
13: end if
14: end for
15: end for
16: With trained optimal Q-function Q∗i , get optimal greedy

policy based on π∗i,φ(ŝ) = arg mina′ Q
∗
i (ŝ, a

′).

V. EXPERIMENTS

In this section, We apply our semi-decentralized Q-
learning algorithm to satisfy a scTLTL task specification.

(a) (b) (c)

Fig. 3: (a): Finite environment as the agent workspace. a,
b and c are sites of interest while d is the obstacle to
avoid. A1 and A2 represent the initial locations of agent
one and agent two, respectively. (b) (c): State trajectory
of the two agents from centralized Q-learning and semi-
decentralized Q-learning (Algorithm 1) to satisfy scTLTL
(5.18), respectively.
The environment of the agent work space is modelled as
finite grid, illustrated in Fig. 3a. Such abstraction, while
conservative, works for some robot dynamics [20]. In this
environment, states a, b, c are labelled as goals while d is
labelled as the obstacle. Consider the scTLTL formulae

p := ♦a ∧ ♦b ∧ ♦c, (5.18)

which states ”eventually visit a, b and c”. We have a team of
agents N = {1, 2}, which shall work cooperatively to satisfy
φ . The agents in N are heterogeneous, which means that
they have different capacities over the sub-tasks specified
in (5.18). Ti is defined to denote the set of sub-tasks that
agent i can do. In this case, it is set that T1 = {a, c} and
T2 = {b, c}. Instead of manually assigning sub-teams of
agents to accomplish the sub-tasks, we will let the learning
process itself to manage that in an optimal way. Fig. 3b and
3c demonstrate the state trajectory of the two agents in sat-
isfying the given scTLTL task specification. The automaton
trajectory is:

{
q0

A1−→
c

q3
A2−→
b

q6
A1−→
a

qf

}
(transition la-

bels show each sub-task accomplished by the corresponding
agent). As presented there, both the centralized and semi-
decentralized settings are able to learn the optimal solution.
However, the scale of the multi-agent learning problem is
significantly reduced in the semi-decentralized algorithm. In
centralized learning, the dimension of the state-action space
is (|Qφ|Πn

i=1|Si||Ai|), while that for the semi-decentralized
learning is |Qφ|

∑n
i=1 |Si||Ai|, with | • | as the cardinality

operator of a set. More specifically in this case study, the
centralized learning has a state-action space of dimension
80, 000, while that of the semi-decentralized learning is
1, 600. Such scale reduction not only saves the computation
and memory burden but also speeds up the convergence. In
addition, the episodic reward for centralized learning and
Algorithm 1 are presented in Fig. 5 and 6. Results show that
both algorithms converge and the semi-decentralized version
uses about a quarter of the experience necessary for that of
the centralized version.

VI. CONCLUSIONS

In this paper, the multi-agent Reinforcement Learning
(RL) technique is applied to the problem of deploying a
multi-robot team to satisfy a syntactically co-safe Truncated
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Fig. 4: The FSA of scTLTL formula p := ♦a ∧ ♦b ∧ ♦c
.
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Fig. 5: Episode reward of centralized Q-learning.
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Fig. 6: Episode reward of semi-decentralized Q-learning
(Algorithm 1). In order to make the agents work highly
cooperatively, the weight of global reward wi is chosen as
a large number in (4.14), so the episode rewards of the two
agents look close but still distinct.

Linear Temporal Logic (scTLTL) task specification. One of
the advantages of multi-agent RL is that the difficult task
assignment problem on heterogeneous agents is integrated as
part of the learning problem. Without manual manipulation
on task assignment, it is more promising to enhancing
optimality. A continuous metric called robustness degree
is used to reward progress towards satisfying the scTLTL
formulae. Moreover, FSA is introduced to coordinate multi-
agent RL to promote convergence and act as a tracker to track
the process of satisfying the scTLTL. Subsequently, an FSA
augmented MDP is constructed for each agent, which share
the FSA state carrying the global information. Then over
the FSA augmented MDP, a semi-decentralized Q-learning

algorithm is proposed to maximize the return. We apply
our algorithms on certain cases and the results demonstrate
the effectiveness of the semi-decentralized multi-agent Q-
learning with reduced complexity.
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