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Abstract— We propose a new robustness score for continuous-
time Signal Temporal Logic (STL) specifications. Instead of
considering only the most severe point along the evolution of the
signal, we use average scores to extract more information from
the signal, emphasizing robust satisfaction of all the specifica-
tions’ subformulae over their entire time interval domains. We
demonstrate the advantages of this new score in falsification and
control synthesis problems in systems with complex dynamics
and multi-agent systems.

I. INTRODUCTION

The increased adoption and deployment of cyber-physical
systems in critical infrastructure in recent years have led to
important questions about their correct functioning. These de-
vices embedded in our cars, planes, and homes are becom-
ing increasingly complex. Thus, automated tools are neces-
sary to alleviate the need for manual design and proof of
correct behavior. Formal methods have provided approaches
to specify temporal requirements of systems, formally verify
whether systems satisfy given specifications, and automatically
synthesize control policies that are guaranteed to be correct
by construction [1]. Temporal logics such as Linear Temporal
Logics (LTL) [2], Metric Temporal Logic (MTL) [3], Time
Window Temporal Logic (TWTL) [4] and Signal Temporal
Logic (STL) [5] are popular specification languages due to their
expressivity, similarity to natural language, and an amenable
structure to symbolic reasoning.

STL defines properties over continuous-time signals in con-
tinuous spaces, and has been adopted for monitoring [5], falsi-
fication, and control problems such as path planning and multi-
agent control with time constraints [6], [7], [8]. One of the major
advantages of STL is that it admits quantitative semantics [9],
known as robustness, which is interpreted as a measure of satis-
faction or violation of a desired task or property. Thus, problems
involving STL can be set up as optimization of the robustness,
and powerful optimization algorithms can be leveraged.

The traditional robustness introduced in [9] uses max and
min functions resulting in a non-differentiable function. It only
takes into account the most critical part of the signal, and, thus,
induces: 1) a masking effect, where the satisfaction of other
parts of the formulae do not contribute to the score, and 2)
locality, where only the value of the signal at only one time point
determines the score. Both these properties have a negative
impact when used in optimization problems. The masking effect
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hinders optimizers from obtaining gradient information to im-
prove solutions, while locality results in solutions that are brittle
to noise. The traditional score was used as the objective function
in an optimization problem and maximized using heuristic opti-
mization algorithms such as Particle Swarm Optimization, Sim-
ulated Annealing and Rapidly Exploring Random Trees (RRTs)
in different synthesis, falsification and control problems [10],
[11], [12]. Exact approaches in [13], [14] encoded the temporal
and Boolean constraints as Mixed Integer Linear Programming
(MILP) problems and used off-the-shelf MILP solvers to maxi-
mize robustness. Although MILP solved the issues of heuristic
algorithms regarding guarantees on finding global optima, they
were not scalable for large number of variables or complex
temporal constraints, due to their NP-complete nature. Another
drawback of MILP implementation is the necessity of having
both constraints and system dynamics be linear or linearizable.

Recent efforts to improve STL robustness focus on smooth-
ing the max and min functions to employ gradient-based
optimization techniques [15], [16]. However, these approxima-
tions cause errors compared to the traditional robustness, and
the soundness property is lost. Another effort is refining the
robustness function to include more information of the signal,
rather than only its most satisfying or violating part. In [17], av-
erageSTL robustness was defined using time average for tem-
poral operators in continuous-time signals and used to solve
a falsification problem. This score did not tackle the problem
with non-smoothmin andmax operations. [18] improved STL
robustness for discrete signals by defining Discrete Average
Space Robustness (DASR) for Globally and Until operators. The
authors removed the non-smoothness by defining a simplified
version called Discrete Simplified Average Space Robustness
(DSASR). However, a positive DASR or DSASR score did
not correspond to satisfaction of the specification. Therefore,
similar to approximation methods, additional constraints were
imposed to guarantee correctness.

In [19], we defined Arithmetic-Geometric Mean (AGM) ro-
bustness for discrete signals and showed the superiority of AGM
to the traditional robustness for control synthesis problems, and
compared our gradient-based maximization to MILP implemen-
tations. In this paper, we extend the STL quantitative score
from [19] to continuous-time signals by defining an Arithmetic-
Geometric Integral Mean (AGIM) robustness. Rather than
merely evaluating the most satisfying or violating points, we
evaluate each subformulae and at every time, highlighting both
the degree of satisfaction and how frequently a specification is
satisfied. In contrast to previous works on average score where
arithmetic mean was employed for some temporal operators,
we refine robustness for all Boolean and temporal operators.
We use arithmetic- and product-based means to capture the
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importance of all outliers in signals based on the nature of
operators. Moreover, in the proposed score, positive values cor-
respond to satisfaction of the specification and negative values
correspond to violation, showing the soundness. We use this
score in falsification and multi-agent control synthesis problems
for continuous-time systems.

II. PRELIMINARIES

Let f ∶ Rn → R be a real function. We define [f]+ =
{f f > 0

0 otherwise
and [f]− = −[−f]+, where f = [f]+ + [f]−.

A. Signal Temporal Logics (STL)
STL [5] is a logic designed to specify temporal properties of

continuous-time signals. A signal S ∶ R≥0 → Rn is a real-value
function mapping each time t ∈ R≥0 to an n-dimensional vector
S(t). The STL syntax is defined as:

ϕ ∶= ⊺ ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1U[a,b]ϕ2, (1)

where ⊺ is the logical True, µ is a predicate, ¬ and ∧ are the
Boolean negation and conjunction operators, and U is the tem-
poral until operator. Other Boolean and temporal operators are
defined as ϕ1 ∨ ϕ2 ∶= ¬(¬ϕ1 ∧ ¬ϕ2) (disjunction), F[a,b]ϕ ∶=
⊺U[a,b]ϕ (eventually), and G[a,b]ϕ ∶= ¬F[a,b]¬ϕ (Globally).
In this paper, we focus on F and G operators. Temporal
operator F[a,b]ϕ requires the “specificationϕ to become True at
some time in [a, b]”. G[a,b]ϕ requires “ϕ to be True at all times
in [a, b]”. A STL specification can have one or more predicates
µ ∶= l(S) ≥ 0 connected by Boolean and temporal operators
and l ∶ Rn → R is a real, linear or nonlinear continuous function
defined over values of elements of S. STL is equipped with
qualitative semantics which shows whether a signal S satisfies
a given specification ϕ at time t (S(t) ⊧ ϕ) or violates it
(S(t) ⊭ ϕ), and quantitative semantics, known as robustness,
which measures how much the signal is satisfying or violating
the specification. We denote the robustness for a specification
ϕ with respect to signal S at time t as ρ(ϕ,S, t) and refer to
it as traditional robustness. For details on calculating traditional
robustness, please refer to [9].

B. Geometric Product Integral

The geometric integral
b

∏
a
f(x)dx is the continuous analog of

the discrete product operator and is defined as [20]:

b

∏
a

f(x)dx = exp
⎛
⎜
⎝

b

∫
a

ln f (x)dx
⎞
⎟
⎠

III. PROBLEM STATEMENT

Consider a continuous-time dynamical system as:

q̇(t) = f(q, u), q(0) = q0, (2)

where t ∈ R≥0, q(t) ∈ Q ⊆ Rn is the state, u(t) ∈ U ⊆ Rm
is the control input at time t, q0 ∈ Q is the initial state, and
f ∶ Rn → Rn is locally Lipschitz. We denote the resulting
system trajectory for the given control input u(t) as ⟨q, u⟩. For
system (2), we consider specifications given as STL formulae
over predicates in its state. For example, the requirement that a
vehicle maintains a maximum speed of 100 over 10 minutes can
be written as φ = G[0,10]Speed ≤ 100.

Problem 1: [Falsification] Given system (2) and a STL for-
mula φf over predicates in state q, find input u(t) such that the
resulting trajectory violates the specification, i.e. ⟨q, u⟩ ⊭ φf .

Problem 2: [Synthesis] Given system (2) and a STL formula
φs over predicates in the state q, find input u(t) such that the
resulting trajectory satisfies the specification, i.e., ⟨q, u⟩ ⊧ φs.
In other words, a falsification problem is interpreted as finding
a counterexample for the given specification to predict possible
faults that may occur in system, e.g., falsification of φ happens
if “at some time between 0 and 10, speed goes beyond the 100
limit”. However, in a control synthesis problem, we are inter-
ested in finding a control input such that the system trajectory
meets the desired requirements, e.g., we want “the vehicle speed
to be less than 100 for all times between 0 and 10”.

Motivating Example: Assume we have an agent with the
specification “eventually reach point B from point A and al-
ways avoid obstacle”. Fig. 1 shows the discrete steps agent takes
to reach B. Although these steps do not collide with obstacle
and result in a positive discrete robustness, the trajectory con-
necting these steps passes through the obstacle. However, using
a continuous-time score, we can correctly find a trajectory that
does not collide with obstacle at any time. This example illus-
trates the need for a continuous-time score, as discretizing the
system is not always preferable, especially when an appropriate
discretization frequency is not known.

0 2 4
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A

Obstacle
Discrete Steps
Discrete Trajectory
Continuous Trajectory

Fig. 1. Failure in collision avoidance in a discrete-time system

IV. ARITHMETIC-GEOMETRIC INTEGRAL MEAN (AGIM)
ROBUSTNESS

We propose a new average-based robustness η for bounded
continuous-time signals that captures more information about
the signal relative to the traditional score. Our robustness def-
inition returns a normalized score η ∈ [−1,1] with η ∈ (0,1]
and η ∈ [−1,0) corresponding to satisfaction and violation of
the specification, respectively; and η = 0 when satisfaction is
inconclusive. Similar to traditional robustness, ∣η∣ is a measure
of how much the specification is satisfied or violated, while the
normalization helps to have a meaningful comparison between
signals of different scales. Throughout the definitions, we as-
sume that we have bounded signals, all Lebesgue integrable
in additive and multiplicative sense [20], and the components
normalized to the interval [−1,1].

Definition 1 (AGIM Robustness): Let S ∶ R≥0 → [−1,1]n
with si being its ith component and π ∈ [−1,1]. The nor-
malized AGIM robustness η(ϕ,S, t) for specification ϕ with
respect to signal S at time t is recursively defined as:

● logical True η(⊺, S, t) ∶= 1
● ϕ ∶ si ≥ π η(ϕ,S, t) ∶= 1

2(si(t) − π)
● Negation η(¬ϕ,S, t) ∶= −η(ϕ,S, t)
● Boolean and temporal operators See (3)
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η(ϕ1 ∧ ϕ2 ∧ ... ∧ ϕm, S, t) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m

√
∏

i=1,...,m
(1 + η(ϕi, S, t)) − 1 ∀i ∈ [1, ...,m] . η(ϕi, S, t) > 0,

1
m ∑
i=1,...,m

[η(ϕi, S, t)]− otherwise

η(ϕ1 ∨ ϕ2... ∨ ϕm, S, t) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
m ∑
i=1,...,m

[η(ϕi, S, t)]+ ∃i ∈ [1, ...,m] . η(ϕi, S, t) > 0,

− m

√
∏

i=1,...,m
(1 − η(ϕi, S, t)) + 1 otherwise

η(G[a,b]ϕ,S, t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b−a

√
b

∏
a
(1 + η(ϕ,S, τ))dτ − 1 ∀τ ∈ [t + a, t + b] . η(ϕ,S, τ) > 0,

1
b−a

b

∫
a

[η(ϕ,S, t′k)]−dτ otherwise

η(F[a,b]ϕ,S, t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
b−a

b

∫
a

[η(ϕ,S, t′k)]+dτ ∃τ ∈ [t + a, t + b] . η(ϕ,S, τ) > 0,

− b−a

√
b

∏
a
(1 − η(ϕ,S, τ))dτ + 1 otherwise

(3)

Algorithm 1 describes the steps to determine satisfaction of
specification φ and recursively calculate the AGIM robustness.

Theorem 1 (Soundness): The AGIM robustness is sound:

η(ϕ,S, t) > 0⇔ ρ(ϕ,S, t) > 0⇒ S ⊧ ϕ,
η(ϕ,S, t) < 0⇔ ρ(ϕ,S, t) < 0⇒ S /⊧ ϕ. (4)

Proofs are provided in the arXiv version1.

A. Averaging Properties
The AGIM robustness finds satisfaction or violation of spec-

ification φ regarding all the subformulae ϕ of φ and at all
appropriate times in the interval. In contrast to [17], [18] where
only arithmetic mean was used, we argue for the need of both
arithmetic and geometric integral means for different cases as
follows. The arithmetic mean is affected by the total sum value
of data and is usually used when no significant outliers are
present. On the other hand, the geometric mean is sensitive
to unevenness and is able to measure consistency in data.
Consider the eventually operator, F[a,b]ϕ, which is satisfied if ϕ
is satisfied at least at one time. Taking the arithmetic mean, we
have a score that takes into account the total sum of all satisfying
times and is sensitive to the critical ones (outliers). On the other
hand, for the globally operator,G[a,b]ϕ, to be satisfied, we need
ϕ to be satisfied at all times. Therefore, for this case we will
use the geometric mean to not only regard all the times, but
also emphasize the consistency in satisfaction. In other words,
for G[a,b]ϕ to have a high score, we need all the times to have
(even) high scores. Same argument holds for the robustness of
the ∧ and ∨ operators.

B. Smoothness Properties
The AGIM robustness η(φ,S, t) is smooth in S almost ev-

erywhere except on the satisfaction boundaries ρ(ϕ,S, τ) = 0,
where ϕ is a subformula of φ, and appropriate times τ as given
in (3). Moreover, the gradient of η with respect to elements
of S that are part of φ’s predicates is non-zero wherever it is
smooth. η(φ,S, t) is left-continuous in t for continuous signals,
and differentiable in t almost everywhere if S is differentiable.

1http://arxiv.org/abs/1909.00898

V. ROBUSTNESS OPTIMIZATION

We formulate the falsification and control synthesis problems
defined in Sec. III as optimization problems. Based on sound-
ness of AGIM robustness, to find a violating trajectory for a
specification φf , we can check if η(φf , ⟨q, u⟩) < 0. Smaller
η corresponds to a more violating behavior. Therefore, we can
solve the falsification Problem 1 by minimizing the robustness
of satisfaction of φf over all allowed control inputs:

u∗ = argminuη(φf , ⟨q, u⟩),
s.t. η(φf , ⟨q, u⟩) < 0,

q̇(t) = f(q, u),
q(0) = q0,

q(t) ∈Q ⊆ Rn,
u(t) ∈U ⊆ Rm.

(5)

Similarly, soundness of AGIM robustness allows us to de-
termine satisfaction of specification φs if η(φs, ⟨q, u⟩) > 0.
Larger η corresponds to a stronger satisfaction of the desired
requirements. Therefore, we can solve the synthesis Problem 2
and find the trajectory which best satisfies the desired φs by
maximizing robustness over all allowed control inputs:

u∗ = argmaxuη(φs, ⟨q, u⟩),
s.t. η(φs, ⟨q, u⟩) > 0,

q̇(t) = f(q, u),
q(0) = q0,

q(t) ∈Q ⊆ Rn,
u(t) ∈U ⊆ Rm.

(6)

In [19], we assumed system dynamics is also smooth and used
gradient ascent to optimize the robustness. In this work, we use
the MATLAB Optimization Toolbox to deal with more complex
and not necessarily differentiable dynamics as in [21]. We focus
on finding piecewise constant inputs. For a given horizon T , we
consider the continuous-time input to be:

u(t) = uk, (k − 1)Ts ≤ t ≤ kTs (7)

where Ts is the input sample time, k ∈ N, k ≤ T
Ts . We hold

each sample value uk constant for one sample interval Ts to
create a continuous-time input u(t). We apply this continuous-
time input to the system (2) to generate the continuous-time
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Algorithm 1: STL SATISFACTION AND AGIM ROBUSTNESS
RECURSIVE CALCULATION

Input: STL Formula φ; Signal S
Output: AGIM Robustness η(φ,S, t)

1 Find η(ϕi, S, τ) for i = {1,2, ...,m} and τ ∈ [a, b];
2 CASE φ = ϕ1 ∧ ϕ2 ∧ ...ϕm;
3 if ANY (η(ϕi, S, t) ≤ 0) for i = {1,2, ...,m} then
4 S ⊭ φ Violation;
5 η(φ,S, t) ∶= 1

m ∑
i
[η(ϕi, S, t)]−;

6 else
7 S ⊧ φ Satisfaction;
8 η(φ,S, t) ∶= m

√
∏

i=1,...,m
(1 + η(ϕi, S, t)) − 1.

9 end
10 CASE φ = ϕ1 ∨ ϕ2 ∨ ...ϕm;
11 if ANY (η(ϕi, S, t) > 0) for i = {1,2, ...,m} then
12 S ⊧ φ Satisfaction;
13 η(φ,S, t) ∶= 1

m ∑
i
[η(ϕi, S, t)]+;

14 else
15 S ⊭ φ Violation;
16 η(φ,S, t) = − m

√
∏

i=1,...,m
(1 − η(ϕi, S, t)) + 1.

17 end
18 CASE φ =G[a,b]ϕ;
19 if ANY (η(ϕ,S, τ) ≤ 0) for τ ∈ [a, b] then
20 S ⊭ φ Violation;

21 η(φ,S, t) ∶= 1
b−a

b

∫
a

[η(ϕ,S, τ)]−dτ ;

22 else
23 S ⊧ φ Satisfaction;

24 η(φ,S, t) ∶= b−a

√
b

∏
a
(1 + η(ϕ,S, τ))dτ − 1.

25 end
26 CASE φ = F[a,b]ϕ;
27 if ANY (η(ϕi, S, τ) > 0) for τ ∈ [a, b] then
28 S ⊧ φ Satisfaction;

29 η(φ,S, t) ∶= 1
b−a

b

∫
a

[η(ϕ,S, τ)]+dτ ;

30 else
31 S ⊭ φ Violation;

32 η(φ,S, t) = − b−a

√
b

∏
a
(1 − η(ϕ,S, τ))dτ + 1.

33 end

trajectory. The optimization process starts with generating a
random sample sequence us = {u1, u2, ..., uT /Ts

}, converted
to a continuous-time input u(t) using (7) and finding system
execution ⟨q, u⟩ starting from initial state q0. We then use
Matlab Constrained Parallel Optimization Toolbox to find an
optimal control policy u∗s under imposed constraints which
optimizes the robustness η for the given STL constraints φ. All
algorithms and simulations are implemented in Matlab running
on an iMac with 3.3GHz Intel Core i5 CPU 32GB RAM.

VI. CASE STUDIES

In this section, we demonstrate the efficacy of the proposed
robustness to solve falsification and control synthesis problems.
We start with a simple verification problem, in which we
compare the traditional and proposed robustness for a trajectory
produced by the system under a given control input. Assume
we want to study if the step response of a dynamical system
takes values greater than a threshold, say 1.2. We can specify

Fig. 2. Transient behavior of two dynamical systems with same ρ (points
marked with arrow) and different η (areas colored in green).

Fig. 3. The Simulink automatic transmission model diagram [21].

this behavior using STL as φ = F[0,T ]S > 1.2, where S is
the step response and T is the duration time. Fig. 2 shows the
step responses of two different systems during the first second.
The traditional robustness considers only the most satisfying
part of the response, therefore, returns the same robustness
for both systems determined by the point marked with arrow:
ρ(φ,S1) = ρ(φ,S2) = max

t∈[0,T ]
(Si(t) − 1.2) = 0.3. However,

the AGIM robustness takes the time average over the signal
at all the satisfying time intervals determined by the colored
area, and returns η(φ,S1) << η(φ,S2) which helps to
distinguish between the behaviors of the two systems. This
example also illustrates the importance of having a continuous-
time robustness rather than discretizing the dynamics and using
a discrete-time score. For instance, if S1 is discretized with a
frequency smaller than 15Hz, we miss the overshoot since the
discrete robustness returns a non-positive score.

A. Falsification
We use the Automatic Transmission Model from Simulink

[21] shown in Fig. 3, and compare falsifying the traditional
robustness versus the proposed one both in computation time
and performance. We show that, by using the new robustness,
we can find not only a violating execution, but a more severe
violating execution which indeed requires a higher priority to
be managed. This is helpful especially in the design stage to
figure out the worst performance of the system for a given
temporal and space constraints and limits on inputs. In Fig. 3,
the simulation time is T = 30 and Throttle is the input u(t)
with U = [0,80] parameterized as a piecewise constant signal
with Ts = 5 as in (7). The desired requirement of the system is:
“RPM must always be less than 4000 and Speed must always
be less than 100 between time 0 and 30 seconds”, specified as:

φFalsify = G[0,30]RPM ≤ 4000 ∧G[0,30]Speed ≤ 100 (8)

The falsification for this specification happens if “RPM is
greater than 4000 or Speed greater than 100”. Fig. 4 and
Fig. 5 show Speed and RPM traces found by minimizing the

5315

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:39:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Falsifying execution (RPM Left, Speed Right) minimizing the
traditional robustness ρ determined by the single point marked with *.

Fig. 5. Falsifying execution (RPM Left, Speed Right) minimizing AGIM
robustness η determined by the areas colored in red.

traditional and AGIM robustness, respectively. As illustrated in
Fig. 4, for the traditional robustness, the unnormalized score is
calculated considering only the most violating part of the signal,

min( min
t∈[0,30]

(4000 −RPM(t)) , min
t∈[0,30]

(100 − Speed(t))),

marked with ∗. On the other hand, traces found by minimizing
the AGIM robustness (3) evaluate all violating parts of both
RPM and Speed over the entire time and results in a more
severe violating behavior, shown as the colored area in Fig. 5.
Table I shows the average run time, number of optimization
iterations and total number of robustness evaluations to find
the first falsifying traces (first time robustness is negative) and
when traces with minimum robustness are found.

B. Control Synthesis
We use the proposed robustness in a multi-agent system with

time constraints. The agents’ high level task is to achieve con-
sensus or formation, and for certain time intervals, we impose
additional temporal tasks for each agent.

Example 1: Consider 2 agents with dynamics (9) to achieve
consensus and meanwhile satisfy some temporal requirements:

ṗi(t) = vi(t), v̇i(t) = uci(t) + ui(t), i = 1,2 (9)

where pi is position, vi is velocity, uci is the input to reach
consensus and ui is the input to be synthesized for agent i to
satisfy the temporal task. The consensus input is [22]:
uci = −γp ∑

j∈Ni

aij(pi − pj) − γv ∑
j∈Ni

aij(vi − vj) − γdvi

where Ni is the set of neighboring agents for i, aij shows
whether agent i is connected to agent j, γp, γv, γd are constant
coefficients for consensus on position, speed and dampening
speed. The desired task is “Eventually Agent1 visits Blue and
Agent2 visits Green within [5,15] and eventuallyAgent1 and
Agent2 visit Yellow within [15,20] and Always within [0,20]
Agent1 and Agent2 stay inside the boundary with speeds
being in the allowed range”, specified as STL formula:

φ1 = F[5,15] p1 ∈ Blue ∧ F[5,15] p2 ∈ Green ∧
F[15,20] p1 ∈ Y ellow ∧ F[15,20] p2 ∈ Y ellow ∧

G[0,20] p1, p2 ∈ P ∧ G[0,20] v1, v2 ∈V,
(10)

TABLE I
TRADITIONAL AND AGIM ROBUSTNESS COMPARISON FOR φFalsify

Traditional AGIM

Time #Itr #FuncEval Time #Itr #FuncEval

First Falsifying Trace 23Sec. 4 35 27Sec. 7 56
Min. Falsifying Trace 49Sec. 14 107 54Sec. 20 138

where pi = [xi, yi] is position with P = [0,10]2 and initial
states p10 = [0,4], p20 = [5,2], vi = [vxi, vyi] is velocity
with V = [−2,2]2 and ui = [uxi , uyi] is the input vector with
U = [−2,2]2. Regions are represented as logical formulae, for
instance, p2 ∈ Green ∶= 6 ≤ x2 ∧ x2 ≤ 8 ∧ 5 ≤ y2 ∧ y2 ≤ 7.
The trajectory obtained by applying the optimal control input
u∗ to each agent found by maximizing the robustness η with
Ts = 0.1 is shown in Fig. 6 (Left). Within [0,5], there is
no individual temporal task for the agents except for staying
inside the boundary. Therefore, the consensus input drives the
agents to move towards each other. Starting at time t = 5, each
agent is supposed to eventually visit a region within the next
10 seconds. The synthesized input u∗ pushes the agents to visit
their assigned regions as fast as possible and stay in each region
(center) as long as possible, as it results in a higher score due to
the averaging properties of η over time, and definition of space
robustness, e.g., argmax

x2,y2

η (p2 ∈ Green, [x2, y2]) = [7,6].
Later, within [15,20], both agents visit region Yellow (center)
as fast as possible and stay there until t = 20.
We next add an obstacle to the environment, and update the
specification such that both agents avoid the obstacle:

φ2 = φ1 ∧ G[0,20] p1 ∉ Black ∧ G[0,20] p2 ∉ Black (11)

Fig. 6 (Right) shows the agents’ trajectories satisfying φ2 avoid-
ing the obstacle. Note that the trajectories are updated to avoid
the obstacle, and due to the constraints on time and control
input, the agents visit region Y ellow (robustness is positive) but
do not reach its center. Fig. 7 shows the scores corresponding to
each agent visiting the assigned regions for the specified time
interval. In Fig.7 (Left), Agent1 reaches Blue at t = 7.3 and
stays until t = 12.9, and reaches Y ellow at t = 16.3. Agent2
reaches Green at t = 8.9 and stays until t = 14.2, and reaches
Y ellow at t = 16.4. In Fig.7 (Right), agents change their
trajectories to avoid the obstacle. Therefore, it takes a longer
time to get to Y ellow (Agent1 at t = 18.2 and Agent2 at
t = 17.1). There is no temporal task in the first 5 seconds, and
we illustrate trajectories up to t = 20 to show the satisfaction of
the temporal tasks but consensus is achieved at later times.

Example 2: Consider a multi-agent system of 3 agents with
dynamics (12) to form a triangle formation of length 2 and
meanwhile satisfy some temporal requirements:

ṗi(t) = ufi(t) + ui(t), i = 1,2,3
ufi(t) = −γp ∑

j∈Ni

aij(pi(t) − pj(t) − dij), (12)

where ui is the input to agent i to be synthesized in order
to satisfy the temporal logic requirements, ufi is the input to
achieve the formation, and dij is the distance between agents i
and j [23]. The desired task is specified as STL formula:

φ3 = F[5,15] p1 ∈ Blue ∧ F[15,25] p2 ∈ Green ∧
F[25,35] p3 ∈ Red ∧ F[35,40]G[0,5] p1 ∈ Y ellow ∧

G[0,45] p1, p2, p3 ∈ P
(13)
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Fig. 6. Agents’ trajectories satisfying φ1 (Left) and φ2 (Right)
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Fig. 7. Scores related to each agent visiting assigned regions for the
specified time interval satisfying φ1 (Left) and φ2 (Right). Dashed and
solid lines correspond to Agent1 and Agent2, respectively. Scores for
each region are colored with the same color with positive score meaning
that the agent is inside the region.

with initial states p10 = [4,0], p20 = [2,2], p30 = [1,0] and
ui = [uxi , uyi] is the input vector with U = [−3,3]3.
The trajectory obtained by applying the optimal control input
u∗ to each agent found by maximizing the robustness η with
Ts = 0.1 is shown in Fig. 8. Starting at time t = 5, Agent1
eventually visits its assigned region within the next 10 seconds
(entersBlue at t = 8, Fig. 9). Note that at this time, no temporal
tasks are specified for the other agents. Therefore, only the
formation input drives these agents to form a triangle. The same
argument holds forAgent2 in [15,25] andAgent3 in [25,35].
Within [35,40], Agent1 visits Y ellow, and stays there for at
least 5 seconds, and the desired formation is achieved.

VII. CONCLUSION

We presented a novel robustness score for continuous-time
STL, which uses arithmetic and geometric integral means. We
demonstrated that this score incorporates requirements of all the
subformulae and all the times of the formula. This comes in
contrast with traditional approaches that consider only critical
ones. We showed that our definition provides a better violation
or satisfaction score in falsification and control applications.
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