
Continuous-time Signal Temporal Logic Planning with Control Barrier
Functions

Guang Yang, Calin Belta and Roberto Tron

Abstract— Temporal Logic (TL) guided control problems
have gained enormous interests in recent years. A wide range of
properties, such as liveness and safety, can be specified through
TL. On the other hand, Control Barrier Functions (CBF) have
shown success in the context of safety critical applications
that require constraints on the system states. In this paper,
we consider linear cyber-physical systems with continuous
dynamics, where controls are generated by digital computers in
discrete time. We propose an offline trajectory planner for such
systems subject to linear constraints given as Signal Temporal
Logic (STL) formulas. The proposed planner is based on a
Mixed Integer Quadratic Programming (MIQP) formulation
that utilizes CBFs to produce system trajectories that are
valid in continuous time; moreover we allow STL predicates
with arbitrary time constraints, in which asynchronous control
updates are allowed. We validate our theoretical results through
numerical simulations.

I. INTRODUCTION

Temporal Logic (TL)-based control has been widely used
in the context of persistent surveillance [1], traffic control
[2] and distributed sensing [3]. While originating from the
field of formal methods [4], TLs are now used to describe
specifications for a variety of system behaviors, as attested
by the proliferation of many different specialized languages
(such as Linear Temporal Logic [5], Computation Tree Logic
[6] and Time Window Temporal Logic [7]). For applications
that require the definition of real values with bounded time
constraints, Signal Temporal Logic (STL) [8] and Metric
Temporal Logic (MTL) [9] have been introduced.

The notion of STL robustness over real-valued signals
[10], also known as space robustness, provides a quantitative
semantics of how well a signal satisfies a given STL formula.1

In discrete time, it is possible to encode the robustness
function of a formula into the constraints of a Mixed Integer
Quadratic Program (MIQP), thus allowing for relatively
efficient control synthesis [12]–[14]. The major drawback of
this type of approach is that it is limited to the discrete-time
setting for verifying the satisfaction of each predicate (since
all time instants need to be represented with variables in the
MILP); if the same paradigm is applied to the discretization of
continuous-time systems, it does not guarantee the satisfaction
of the formula in between two sampled time steps (see
Figure 3 for an example).

Moreover, on the one hand, practical systems evolve in
continuous time, and time intervals in the specification can
also involve arbitrary (application-driven) continuous-time
intervals. On the other hand, there is usually a limitation on

1There also exists a notion of time robustness [11]. In this paper, when
we use the term robustness, we refer to space robustness.

the control and actuation rates that can be achieved, and the
control updates cannot be generally assumed to coincide with
the time intervals in the specification.

Control Barrier Functions (CBFs, first introduced in [15]),
are related to Control Lyapunov Functions (CLF), but instead
of stability they guarantee that the trajectories of a system
remain in a pre-defined forward invariant set. CBFs have
been extended to Exponential CBFs [16] and High Order
CBF (HOCBF) [17] for systems with relative degree higher
than one. CBFs have been applied to adaptive cruise control
[18], swarm manipulation [19], heterogeneous multi-robot
manipulation [20], and bipedal robotic walking [21]. A typical
CBF formulation involves a continuous-time system and
results in a Quadratic Program (QP) that need to be solved
at every control update. For real-world systems with discrete
time updates, the computed controls are applied in a Zero
Order Hold (ZOH) manner, but special care needs to be
taken in order to ensure that the CBF constraints hold true
in between the two control updates [22], [23].

In this paper, we consider trajectory planning for continuous
linear systems with discrete control updates, constrained
by linear CBF safety sets, and STL specifications with
linear predicates. We are interested in synthesizing a discrete
sequence of controls to satisfy an STL formula in continuous
time while remaining in the safety set specified by the CBFs.
There exist some work [24] that combines TLs with CBFs
using continuous dynamics; however in that formulation
predicates are guaranteed to be satisfied only at discrete
times and does not guarantee continuous-time satisfaction. To
the best of our knowledge, there have been no attempts for
trajectory planning under continuous-time Signal Temporal
Logic specification with discrete control updates using CBFs.

In our proposed method, we formulate a MIQP with
constraints obtained from the STL specification and CBF
functions in such a way that continuous-time satisfaction
is guaranteed with discrete ZOH updates. The CBFs are
used to derive constraints based on linear predicates that
guarantee continuous satisfaction between time instants. Our
main contributions are as follows. First, we propose a novel
integer encoding method that provides lower bounds for
linear CBF constraints over fixed time intervals. Second,
we overcome the drawbacks of control synthesis based on
discrete-time STL robustness by encoding the STL robustness
as time-varying CBF constraints. Third, we provide an answer
to the issue of asynchronicity of update times between a given
STL specification and the actual system sampling and control
update rates.

2020 American Control Conference
Denver, CO, USA, July 1-3, 2020

978-1-5386-8266-1/$31.00 ©2020 AACC 4612

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

A. Notation

We use Z and Rn to denote the set of integers and the
n-dimensional real space, respectively. A function f : Rn 7→
Rm is called Lipschitz continuous on Rn if there exists a
positive real constant L ∈ R+, such that ‖f(y) − f(x)‖ ≤
L‖y − x‖,∀x, y ∈ Rn. Given a continuously differentiable
function h : R 7→ R, we use h(r) to denote its r-th order
derivative with respect to time t. A continuous function α :
[−b, a) 7→ [−∞,∞), for some a > 0, b > 0, is said to be of
class K if α is strictly increasing, and α(0) = 0.

B. System Dynamics

Consider a continuous-time linear control system:

ẋ(t) = Ax(t) +Bu, (1)

where A ∈ Rn×n, B ∈ Rn×m, while x ∈ Rn and u ∈ Rm
represent the state and control inputs.

We assume that we are only able to update the control
inputs only at regular discrete sampling instants. We denote
tk as the k-th sampling time instant, and the time interval
between control updates as τ = tk+1−tk, k = {1, 2, . . .}. For
t ∈ [tk, tk+1), we implement the Zeroth-Order Hold control
mechanism which holds a control signal at tk constantly
until tk+1. For each update interval, the dynamics (1) can be
exactly integrated as

x(t) = eA(t−tk)x[tk] +

∫ tk+1

tk

eA(t−s)dsBu[tk], (2)

for tk ≤ t < tk+1. Let V −1QV be the Jordan decomposition
of A, where V an invertible matrix, and Q a block-diagonal
matrix containing κ Jordan blocks. We denote s(i) and λi
the size and eigenvalue associated with i-th Jordan block,
respectively, i ∈ {1, . . . , κ}. With this decomposition, we can
rewrite (2) as:

x(t) = eA(t−tk)x[tk]+e
A(t−tk)V

∫ tk+1

tk

e−QsdsV −1Bu[tk].

(3)

C. Safety Set

We define Nc safety sets Cl, l = 1, ..., Nc as

Cl = {x ∈ Rn|hl(x) ≥ 0}, (4)

and use ∂Cl and Int(Cl) to denote the boundary and the
interior of Cl. Given an initial time t0, we call the set
Cl forward invariant for system (1) if x(t0) ∈ Cl implies
x(t) ∈ Cl,∀t ≥ t0; note that invariance is maintained under
complement, intersection and union of sets.

In this paper, we consider affine safety constraints as
smooth functions in the form

hl(x) = νTl x+ γl, l = 1, . . . , Nc, (5)

where νl ∈ Rn and γl ∈ R. We define the Lie derivative
of a smooth function hl(x(t)) along the dynamics (1) as
£Axhl(x) := ∂hl(x(t))

∂x(t) Ax(t), £Bhl(x) := ∂hl(x(t))
∂x(t) B. The

relative degree rb ≥ 1 is defined as the smallest natural

number such that £B£rb−1Ax hl(x)u 6= 0. The time derivatives
of hl can then be expressed as

h
(rb)
l (x) = £rbAxhl(x) +£B£

rb−1
Ax hl(x)u. (6)

By combining (5) and (6), we have

h
(rb)
l (x) = νTl (A)

rbx+ νTl (A)
rb−1Bu, (7)

where (A)rb is the rb-th power of A.

D. Exponential Control Barrier Function

We use Exponential Control Barrier Functions (ECBF, [16])
to ensure forward invariance of the set Cl with relative degree
rb. Before the formal definition, we first introduce a virtual
input-output linearized system

ξ̇b(x) = Abξb(x) +Bbµ,

hl(x) = Cbξb(x),

where ξb(x) =
[
hl(x), ḣl(x), ..., h

rb
l (x)

]T
,with

Ab =

0 1 · · 0
· · · · ·
0 0 0 · 1
0 0 0 0 0

 , Bb =

0
·
0
1

 ,
Cb = [1 · · · 0] .

Now we can formally define the ECBF as follows:
Definition 1 (Exponential Control Barrier Function):

Consider the dynamical system (1), a safety set Cl defined
in (4) with hl(x) having relative degree rb ≥ 1. Then, hl(x)
is an exponential control barrier function (ECBF) if there
exists Kb ∈ R1×rb such that, ∀x ∈ Int(Cl),

inf
u∈U

[£rbAxhl(x) +£B£
rb−1
Ax hl(x)u+Kbξb(x)] ≥ 0, (8)

and Kb is a feedback gain that stabilizes a system in standard
controllable form (see [16] for details).

E. Signal Temporal Logic

The syntax of STL is recursively defined as:

ϕ := >|µ|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|F[a,b]ϕ|G[a,b]ϕ|ϕ1U[a,b]ϕ2,
(9)

where > is the Boolean constant true, and µ is a predicate.
We consider predicates µi of the form

µ := y(t) ≥ 0, (10)

where y is a linear function over the states of (1). The
Eventually temporal operator F[a,b]ϕ specifies that ϕ holds
true at some time step between [a, b]. The Always operator
G[a,b]ϕ states that ϕ must holds true ∀t ∈ [a, b]. To state that
a signal y satisfies a specification (formula) ϕ at time t we
use the notation x(t) |= ϕ. The STL semantics is the defined

4613

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

as follows:

(y, t) |= µ⇔ y(t) ≥ 0

(y, t) |= ¬µ⇔ ¬((y, t) |= µ)

(y, t) |= µ1 ∧ µ2 ⇔ (y, t) |= µ1 ∧ (y, t) |= µ2

(y, t) |= F[a,b]µ⇔ ∃t′ ∈ [t+ a, t+ b]s.t.(y, t′) |= µ

(y, t) |= G[a,b]µ⇔ ¬F[a,b](¬µ)
(y, t) |= ϕ1U[a,b]ϕ2 ⇔ ∃t′ ∈ [t+ a, t+ b]

s.t.(y, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′], (y, t′′) |= ϕ1.

(11)

All STL temporal operators have bounded time intervals
in continuous time. The horizon of an STL formula is the
minumum time needed to decide its satisfaction. For an STL
formula that has no nested operators, its horizon is determined
by the largest upper bound in all operators.

F. Mixed Integer Formulation for STL

In this section, we review the binary encoding of STL
robustness using mixed integer constraints proposed in [14].
This encoding is based on the big-M method, where a
sufficiently large number M is introduced to enforce logical
constraints. For the i-th predicate µi and the corresponding
binary variable zµi [tk] ∈ {0, 1}, we use the constraints

yi[tk] ≤Mzµ[tk], −yi[tk] ≤M(1− zµ[tk]), (12)

to establish the relation

yi[tk] ≥ 0 ⇐⇒ zµ[tk] = 1. (13)

For an STL formula ϕ with horizon N , we denote zϕ[tk] ∈
{0, 1}, with (x, t) |= ϕ ⇐⇒ zϕ[t] = 1. We also denote
zϕi [t]

k ∈ {0, 1} for the i-th subformula which is recursively
defined based on the STL semantics (9).

Given a STL formula ϕ, we can recursively encode the
rest of the logical operators by using the binary variables of
subformula and predicates as shown in Table I (we dropped
the k for simplicity in the table).

As mentioned in the introduction, this encoding guarantees
satisfaction of the entire STL formula over a horizon N
only at the sampling time instants tk, k = 1, ..., N , and for
temporal operators having the boundary of each time interval
(e.g., a and b in G[a,b]) coincide with update instants tk.

Definition Encoding Rule

∧ zϕ[t] = ∧pi=1zψi
[t] zϕ[t] ≤ zψi

[t], zϕ[t] ≥ 1− p+
p∑
i=1

zψi
[t]

∨ ztϕ = ∨pi=1zψi
[t] zϕ[t] ≥ zψi

[t], zϕ[t] ≤
p∑
i=1

zψi
[t]

¬ zϕ[t] = ¬zψ [t] zϕ[t] = 1− zψ [t]

F ϕ = F[a,b]ψ zϕ[t] =
t+b∨

τ=t+a
zτψi

G ϕ = G[a,b]ψ zϕ[t] =
t+b∧

τ=t+a
zτψi

U ϕ = ψ1U[a,b]ψ2 G[0,a]ψ1 ∧ F[a,b]ψ2 ∧ F[a,a]ψ1Uψ2

TABLE I: STL Encoding with Mixed-integer

III. PROBLEM STATEMENT

Problem 1: Given the linear system (1) with initial state
x0 ∈ X ⊆ Rn, where X is an initial feasible set that satisfies
all safety constraints (4), and given a STL formula ϕ with
horizon tf , synthesize a sequence of control inputs u[tk], k =
1, ..., N , that minimizes a quadratic cost function J(u(t))
over the horizon, while the trajectory satisfies a formula ϕ.

IV. STL BASED CONTROL WITH CONTROL BARRIER
FUNCTION

This section contains the main theoretical and algorithmic
contributions of this paper. We present the CBF formulation
in section IV-A. Next, in section IV-B, we demonstrate how
to obtain the lower bound of a given linear CBF constraint
using mixed-integer encoding. In section IV-C, we show how
certain STL formulas can be encoded as CBF constraints
and achieve continuous-time satisfaction. Finally, the MIQP
based planner is formally defined in section IV-E.

A. CBFs for Linear Constraints

From the closed form solution (3) for the dynamical system
and safety constraint (5), we can write the CBF constraint
(8) at the k-th update instant as

ζk(t) = σ+

κ∑
i=1

s(i)−1∑
j=0

(c
(x)T
k,i,j x[tk]e

λittj+c
(u)T
k,i,j u[tk]e

λittj),

ζk(t) ≥ 0,∀t ∈ [tk, tk+1]. (14)

where c
(x)
k,i,j ∈ Rn, c(u)k,i,j ∈ Rn, and σ ∈ R are constants

obtained by solving the matrix exponentials in (3) and
carrying out the subsequent matrix-vector calculations.

From a computational standpoint, the main difficulty in
enforcing (14) is the fact that the inequality needs to hold
on an entire interval of τ . An equivalent constraint could
be obtained by taking the minimum of ζ(t) over the same
interval, and then enforcing the inequality on this minimum.
To obtain the minimum, we decompose the sum in (14) into
the following terms:

ζ
(x)
k,i,j(t) = c

(x)T
k,i,j x(t0)e

λittj , ζ
(u)
k,i,j(t) = c

(u)T
k,i,j u0e

λittj ,

i = 1, . . . , κ, j = 0, . . . , s(i)− 1, (15)

and we introduce a set of slack variables β(x)
ij , β(x)

ij , i =
1, . . . , κ, j = 0, . . . , s(i)− 1 such that

κ∑
i=1

s(i)−1∑
j=0

β
(x)
k,i,j + β

(u)
k,i,j = σ. (16)

We then substitute (14) with the following inequalities:

ζ
(x)
k,i,j(t) + β

(x)
k,i,j ≥ 0, ζ

(u)
k,i,j(t) + β

(u)
k,i,j ≥ 0,

i = 1, . . . , κ, j = 0, . . . , s(i)− 1,∀t ∈ [tk, tk+1]. (17)

To simplify the notation, we will drop the subscript k
for the remainder of this section. The transformation of the
constraints is justified by the following proposition.

4614

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

Proposition 1: There exist a set of {β(x)
i,j , β

(u)
i,j } such that

(16) and (17) hold if and only if inequality (14) holds.
Proof: To prove that (17) implies (14), we can simply

sum all the inequalities in (17) over i and j, and then simplify
the summation of the β’s using (16).

To prove that (14) implies (17), we first define the “excess”
quantity

δ =

κ∑
i=1

s(i)−1∑
j=0

(
ζ
(x)
i,j (t) + ζ

(u)
i,j (t)

)
, (18)

and then construct the β’s by splitting δ and σ evenly as
follows:

β
(x)
i,j =− ζ(x)i,j (t) +

δ + σ

2
∑n
i=1(s(i)− 1)

,

β
(u)
i,j =− ζ(u)i,j (t) +

δ + σ

2
∑n
i=1(s(i)− 1)

.

i ∈ {1, . . . , κ}, j ∈ {0, . . . , s(i)− 1},

We first verify that these β’s satisfy the summation
constraint (16):

κ∑
i=1

s(i)−1∑
j=0

β
(x)
i,j + β

(u)
i,j = −

κ∑
i=1

s(i)−1∑
j=0

(ζ
(x)
i,j (t) + ζ

(u)
i,j (t))

+ 2

κ∑
i=1

s(i)−1∑
j=0

δ + σ

2
∑κ
i=1(s(i)− 1)

= σ (19)

To show that the constructed β’s also satisfy (17), first
notice that by substituting (18) into (14), we have δ+σ ≥ 0;
then we have

ζ
(x)
ij (t) + β

(x)
i,j =

δ + σ

2
∑n
i=1(s(i)− 1)

≥ 0, (20)

for all i, j, and with an analogous expression for ζ(u)ij (t),
β
(u)
i,j . This completes the proof.

B. CBF lower bound through mixed-integer encoding

As briefly anticipated in the previous section, the constraints
in (17) need to hold for every time instant in a given interval,
resulting in an infinite number of constraints. In order to
include such constraints in the MIQP formulation, we need
to drop the dependency on t while maintaining linearity in
terms of x and u. We perform one additional transformation
by defining new variables that capture lower bounds (over
time) of the expressions in (17):

ζ
(x)
k,i,j,min = min

t∈[tk,tk+1]
ζ
(x)
k,i,j(t), (21)

ζ
(u)
k,i,j,min = min

t∈[tk,tk+1]
ζ
(u)
k,i,j(t),

i ∈ {1, . . . , κ}, j ∈ {0, . . . , s(i)− 1}.

Then, (17) can be exactly replaced by

ζ
(x)
k,i,j,min(t) + β

(x)
k,i,j ≥ 0, ζ

(u)
k,i,j,min(t) + β

(u)
k,i,j ≥ 0,

i ∈ {1, . . . , κ}, j ∈ {0, . . . , s(i)− 1}. (22)

There is a finite number of such constraints, as they do not
depend on the continuous time anymore. We incorporate them
in our MIQP formulation in two steps.

The first step is to use the Big-M encoding method to
remove all the terms that are either monotonically increasing
or bounded below by zero, and so they cannot be active
at the current solution. We define sets of binary variables
z
(x)
k,i,j , z

(u)
k,i,j ∈ {0, 1} for each one of the inequalities in

(22). We then associate desired values of ζ(x)k,i,j(t) or ζ(u)k,i,j(t)
according to the following rules:

z
(x)
k,i,j =

0, c

(x)T
k,i,j x[tk] ≥ 0 ∧ λi ≥ 0

0, c
(x)T
k,i,j x[tk] ≥ 0 ∧ λi ≤ 0 ∧ σ ≥ 0

1, otherwise

(23)

z
(u)
k,i,j =

0, c

(u)T
k,i,j u[tk] ≥ 0 ∧ λi ≥ 0

0, c
(u)T
k,i,j u[tk] ≥ 0 ∧ λi ≤ 0 ∧ σ ≥ 0

1, otherwise

(24)

These rules are motivated by the fact that when zk,i,j = 0,
the corresponding inequality in (17) is automatically satisfied,
and hence it can be ignored. The rules are transformed into
mixed-integer linear constraints using the big-M method.

For example, if we want to enforce c(x)Tk,i,j x[tk] ≥ 0 ⇐⇒
z
(x)
k,i,j = 0 and c(u)Tk,i,j u[tk] ≥ 0 ⇐⇒ z

(u)
k,i,j = 0 , the following

mixed integer encoding are used: c(x)Tk,i,j x[tk] ≤ M(1 −
z
(x)
k,i,j), −c

(x)T
k,i,j x[tk] ≤ Mz

(x)
k,i,j , c

(u)T
k,i,j u[tk] ≤ M(1 − z(u)k,i,j),

−c(u)Tk,i,j u[tk] ≤ Mz
(u)
k,i,j , For λi ≥ 0 ⇐⇒ z

(x,u)
k,i,j = 0, we

have λi ≤ M(1 − z(x,u)k,i,j),−λi ≤ Mz
(x,u)
k,i,j , where M is a

sufficiently large number. For all terms such that z(x,u)k,i,j = 1,
we need to ensure ζ(x)k,min(x[tk], τ) and ζ

(u)
k,min(u[tk], τ) are

positive. Consider the CBF lower bound (21), for ∀t ∈
[tk, tk+1]. The idea is that ζk(t) converges to a value
monotonically when j = 0 (simple eigenvalue) and has a
minimum stationary point when j ≥ 1 (Jordan block of
dimension greater than one). In this form, we can compute
such lower bounds analytically; the results are collected in
Table II.

Note that the minimum values ζk,min are linear in the
optimization variables x[tk], u[tk]. Therefore, these lead to
linear constraints in our optimization problem.

C. CBF constraints for STL predicates
The forward invariance property from the CBF can be

carried over to ensure STL satisfaction in continuous time.

Condition Minimum Value
c
(x)T
k,i,jx[tk] < 0, c

(u)T
k,i,j u[tk] < 0 ζ

(x)
k,min(x[tk], τ) = ζ

(x)
k,i,j(τ)

λi ≥ 0, j ≥ 1 ζ
(u)
k,min(u[tk], τ) = ζ

(u)
k,i,j(τ)

c
(x)T
k,i,jx[tk] < 0, c

(u)T
k,i,j u[tk] < 0 ζ

(x)
k,min(x[tk], τ) = c

(x)T
k,i,jx[tk] + σ + β

(x)
k

λi > 0, j = 0 ζ
(u)
k,min(u[tk], τ) = c

(u)T
k,i,j u[tk] + β

(u)
k

c
(x)T
k,i,jx[tk] < 0, c

(u)T
k,i,j u[tk] < 0 ζ

(x)
k,min(x[tk], τ) = ζ

(x)
k,i,j(−

j
λi

)

λi < 0, j ≥ 1 ζ
(u)
k,min(u[tk], τ) = ζ

(u)
k,i,j(−

j
λi

)

c
(x)T
k,i,jx[tk] < 0, c

(u)T
k,i,j u[tk] < 0 ζ

(x)
k,min(x[tk], τ) = c

(x)T
k,i,jx[tk] + σ + β

(x)
k

λi < 0, j = 0 ζ
(u)
k,min(u[tk], τ) = c

(u)T
k,i,j u[tk] + β

(u)
k

TABLE II: CBF lower bound encoding

4615

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

In short, we would like to enforce CBF constraints on all
subformulae containing G (always) temporal operator, such
that the continuous state trajectory satisfies the subformulae.
More specifically, we first use the mixed-integer method
from II-F to ensure the trajectory satisfies the formula at
sampling instants tk, k = 1, ..., N . The idea is to ensure the
state trajectory will stay within the set defined by predicate
µ,∀t ∈ [a, b] by defining the predicate as a safety set i.e.,
h(x) := µ and enforce continouse time CBF lower bound at
tk.

D. Asynchronous STL and control updates

Recall that we discretize system (1) with constant sampling
interval τ . If a time boundary of a temporal operator (i.e.,
a or b in [a, b]) coincides with some sampling time instant
tk, we can directly encode the CBF constraints at tk using
the methods from sections IV-A and II-F. However, tem-
poral operators could have time boundaries falling between
sampling intervals (i.e., a, b ∈ (tk, tk+1) for some k). For
example, we have STL formula φ = G[0.63s,0.80s]µ for some
predicate µ. Assume that the system can only sample at
the tk ∈ {0, 0.2, ..., 2.0} time instants. In this case, we
cannot encode the STL specification directly due to the
mismatch between the system sampling instants and the time
intervals from STL predicate. We approach this issue by using
two time scales, namely the Simulated System, {tsimks }

Ns−1
ks=0 ,

and the Real System, {trealkr
}Nr−1
kr=0 ⊂ {tsimks }. we define

the two control sequences as {usim[tks]} and {ureal[tkr]}
accordingly.

Fig. 1: Time Scales for Real and Simulated Systems

Notice that under the system update constraint, we can
only control the system at the real sampling times (e.g.,
t = 0.2s, 0.4s, ..., 2.0s). To solve the mismatch, we formulate
the MIQP with the simulated control sequence {usim[tks]},
but then add additional constraint usim[tks] = usim[t′kr], for
all tks not appearing in {trealkr

}, and where t′kr is picked to
be the closest preceding real sampling time; for instance, in
our example we set usim[t = 0.63] = usim[t = 0.6]. In this
way, usim can be applied to the real system while satisfying
the required time discretization. In example V-C, we show
an example of solving this type of problem.

E. Optimization Problem

To solve Problem 1, we formulate the following MIQP:

min
u,x

u(t)Tu(t)

s.t. x[tk+1] = Akx[tk] +Bku[tk],

x(t) |= ϕ,

zϕ, z
(x)
k,i,j , z

(u)
k,i,j ∈ {0, 1},

ul ≤ uk ≤ uu,
k = 0, ..., N − 1

t ∈ [0, tf], i = [1, ..., κ], j = [1, ..., s(i)].

(25)

N is the total number of controller updates and tf is the
horizon of the formula ϕ. The decision variables for the
MIQP are x[tk] and u[tk] that are evaluated on the simulated
time sequence, which is defined in IV-D. The ul and uu are
the lower bound and upper control bounds, respectively. To
ensure x(t) |= ϕ, we enforce the mixed integer constraints
that are defined in II-F and IV-B. Ak and Bk are defined
using the discretization method in Section II-B.

V. NUMERICAL EXAMPLES

In Example 1, we enforce safety constraints over velocity
on an one dimensional double integrator system, while its
position is required to oscillate between some time intervals;
we impose safety velocity constraints as an intersection of two
safety sets in the form of (4). In Example 2, we demonstrate
safety constraints over positions as a union of the safety sets
on a 2-dimensional double integrator system. In Example
3, given the same system from Example 1, we demonstrate
that our method can be used for the case where we have
asynchronous time scales between {[tks]sim} and {[tkr]real}.
All examples were formulated as MIQPs using Gurobi [25]
and solved on an i9-9980HK CPU.

A. Example 1: STL based planning with safety constraints

Consider a double integrator system[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u, (26)

where x1 is the position and x2 is the velocity. Given the
following STL formula with horizon tf = 2s:

ϕ1 =F[0.2s,0.8s](x1(t) <= −2) (27)
∧ F[1s,1.4s](x1(t) >= 2)

∧ F[1.6s,2s](x1(t) <= −2),
∧G[0s,2s](x2(t) <= 10 ∧ x2(t) >= −10),

which requires state x1(t) to oscillate between −2 and 2
within some real time interval. The velocity is required to
satisfy the safety requirement: −10 < x2(t) < 10,∀t ∈
[0, tf]. To achieve the safety requirement, we define two safety
sets with h1(x) = x2−10 and h2(x) = −x2+10 in the form
of (4) as follows: C1 = {x2 ∈ R|h1(x) ≥ 0}, C2 = {x2 ∈
R|h2(x) ≥ 0}.We would like o ensure system trajecotry stays
within the intersection of the two safety sets, i.e., C1 ∩ C2.

4616

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

To achieve continuous-time satisfaction, we enforce
the following CBF constraints based on the encod-
ing method from IV-B as ζmin,h1(x2[tk], u[tk], τ) ≥
0, ζmin,h2

(x2[tk], u[tk], τ) ≥ 0, τ = tk+1−tk, k = 0, ..., N−
1. The elapsed time for solving the MIQP is 0.02 seconds. The
hyper parameters are x(t0) = [1,−1]T , k = 20, tf = 2.0s,
[ul, uu] = [−40, 40] and N = 10.

Fig. 2: Velocity constraints using CBFs

B. Example 2: STL predicates with disjunction

Consider a two-dimensional double-integrator system with
x = [x1, x2, x3, x4], where x1, x3 are positions and x2, x4
are velocities and control u = [u1, u2]

T are the accelerations.
Given the following STL formula with horizon tf = 1s:

ϕ2 :=F[0.1s,0.6s](x1(t) ≤ −0.5 ∧ x3(t) ≥ 0.5)

∧ F[0.7s,1s](x1(t) ≥ 1 ∧ x3(t) ≥ 1) (28)
∧G[0s,1s](x1(t) ≥ 0 ∨ x3(t) ≥ 0),

t ∈ [0, tf].

Again, we define two new safety sets with h3(x) = x1 and
h4(x) = x3 as C3 = {x1 ∈ R|h3(x) ≥ 0}, C4 = {x3 ∈
R|h4(x) ≥ 0}. In this example, we demonstrate that a
formula with an always temporal operator G[0s,1.0s]x1(t) ≥
0 ∨ x3(x) ≥ 0 can be expressed as a union of the two safety
sets, i.e., C3 ∪ C4. Note that, since h3 and h4 have relative
degrees of rb = 2, we define ECBF constraints: ζh3

(t), ζh4
(t)

based on (8). Next, we obtain the CBF lower bounds ζmin,h3
,

ζmin,h4 using our proposed mixed-integer encoding method
from Section IV-B and enforce the following condition:

ζmin,h3(x1[tk], u[k], τ) ≥ 0 ∨ ζmin,h4(x3[tk], u[tk], τ) ≥ 0

tk ≤ t ≤ tk+1, k = 0, ..., N − 1.

Note we can encode logical OR (∨) using Big-M encoding
to achieve C3 ∪ C4.

In Case 1, STL formula ϕ2 is encoded with the mixed
integer encoding method from Section II-F. Note that the
discrete state trajectory satisfies ϕ2 in Figure 3, but the
continuous state trajectory clearly violates the formula. In
Case 2, the CBF constraints are used in the MIQP and the
resulting trajectory (Figure 4) satisfies ϕ2 in continuous

Fig. 3: Case 1 no CBF Fig. 4: Case 2 with CBF

time. The optimization problems in Case 1 and Case 2
are solved in 0.063s and 0.12s respectively. The hyper
parameters are x(t0) = [1, 0,−0.5, 0]T , [k1, k2] = [30, 30],
tf = 1.0s,[ul, uu] = [−40, 40] and N = 10.

C. Example 3: Continuous-time STL under asynchronous
time lines

Finally, we illustrate that a given STL formula can be
satisfied under the asynchronous time scales between the real
system and the simulated system in IV-D.

Consider the following example with the same double
integrator system (26). The system can only update at the
time instants [tkr]real = {0, 0.2, ..., 2.0} with Nr = 11. We
would like the system trajectory to satisfy the following STL
formula:

ϕ3 = G[0.63s,0.8s](x2(t) >= 3) ∧ F[1.4s,2s](x2(t) <= −4).
(29)

We can directly encode F[1.4s,2s](x2(t) <= −4) with the
mixed-integer method from Section II-F because the time
bound [1.4, 2] is defined on the sampling instants [tkr]real.
However, we cannot enforce G[0.63s,0.8s](x2(t) >= 3) using
the previous method due to the asynchronous time scales. To
resolve this issue, we define a simulated time scale based on
ϕ3 with Ns = 12, [t3]sim = 0.6, [t4]sim = 0.63 and safety
set with h5(x) = x2 − 3 as C5 = {x2 ∈ R|h5(x) ≥ 0}.
To ensure the system stays within C5 at treal = 0.63s, the
following CBF constraint is applied at [t4]sim:

ζmin,h5
(x2[t4]sim, usim[t4], τ) ≥ 0, (30)

with τ = 0.8s − 0.63s = 0.17s and additional constraint
u[t4]sim = u[t3]sim. Finally, we can directly apply the
synthesized control sequence {u[tks]sim} in treal by setting
u[t3]real := u[t4]sim.

In Fig 5, we demonstrate that G[0.63s,0.80s] is satisfied by
defining an unsafe region (Red) using Eqn. (30). The resulting
trajectory from the real system still satisfies ϕ3 in continuous
time. The MIQP is solved in 0.042s. The hyper parameters
are x(t0) = [1,−1]T , k = 5, tf = 2.0s, [ul, uu] = [−40, 40],
Ns = 12, Nr = 11.

D. Example 4: Nested Temporal Operators

In this example, we perform motion planning under an
STL specification with nested temporal operators: ϕ4 =

4617

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

F[0,10]G[0,1](x1 ≥ 3) ∧ F[0,10](x1 ≤ −2) for system (26). In
other words, we would like the state x1 to eventually reach
x1 ≥ 3 hold there for 1s, and eventually reach x1 ≤ −2
between the entire interval [0, 10] in seconds. The total
number of control updates N = 20 and control is bounded
with −1 ≤ u ≤ 1. The MIQP is solved in 0.0459s.

Fig. 5: Asynchronous Updates Fig. 6: Nested operator

VI. CONCLUSION

In this paper, we developed a novel framework for trajectory
planning under real-valued space and time constraints from
a STL formula. Motivated by the fact that current control
approaches using STL cannot guarantee satisfaction in be-
tween discrete-time instants, we introduce an encoding of the
always temporal operator by using the lower bound of a CBF.
We further ensure the satisfaction of safety properties through
STL formulation to be satisfied in continuous-time by adding
CBF constraints. For future work, we will investigate adaptive
control frameworks, where the control update intervals vary
based on system states and CBF constraints, such that the STL
formula is satisfied in continuous-time but with minimum
number of controller updates.

VII. ACKNOWLEDGEMENT

This work was partially supported by the National Science
Foundation under grants IIS-1723995 and CMMI-1728277.

REFERENCES

[1] K. Leahy, D. Zhou, C.-I. Vasile, K. Oikonomopoulos, M. Schwager,
and C. Belta, “Persistent surveillance for unmanned aerial vehicles
subject to charging and temporal logic constraints,” Autonomous Robots,
vol. 40, no. 8, pp. 1363–1378, 2016.

[2] S. Sadraddini and C. Belta, “Model predictive control of urban traffic
networks with temporal logic constraints,” in 2016 American Control
Conference (ACC). IEEE, 2016, pp. 881–881.

[3] Z. Serlin, K. Leahy, R. Tronl, and C. Beita, “Distributed sensing
subject to temporal logic constraints,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 4862–4868.

[4] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[5] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 1977, pp.
46–57.

[6] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching time temporal logic,” in Workshop
on Logic of Programs. Springer, 1981, pp. 52–71.

[7] C.-I. Vasile, D. Aksaray, and C. Belta, “Time window temporal
logic,” Theoretical Computer Science, vol. 691, pp. 27 – 54, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0304397517305509

[8] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[9] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[10] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theoretical Computer
Science, vol. 410, no. 42, pp. 4262–4291, 2009.

[11] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[12] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 81–87.

[13] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in
Proceedings of the 18th international conference on hybrid systems:
Computation and control. ACM, 2015, pp. 239–248.

[14] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2015, pp. 772–779.

[15] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467,
2007.

[16] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference (ACC), 2016. IEEE, 2016, pp. 322–328.

[17] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” preprint arXiv:1903.04706, 2019.

[18] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference
on. IEEE, 2014, pp. 6271–6278.

[19] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Control barrier
certificates for safe swarm behavior,” IFAC-PapersOnLine, vol. 48,
no. 27, pp. 68–73, 2015.

[20] L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates
for heterogeneous multi-robot systems,” in 2016 American Control
Conference (ACC). IEEE, 2016, pp. 5213–5218.

[21] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
American Control Conference (ACC), 2015. IEEE, 2015, pp. 4542–
4548.

[22] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, and M. Krstić, “Safety ver-
ification using barrier certificates with application to double integrator
with input saturation and zero-order hold,” in 2018 Annual American
Control Conference (ACC). IEEE, 2018, pp. 4664–4669.

[23] G. Yang, C. Belta, and R. Tron, “Self-triggered control for safety
critical systems using control barrier functions,” in 2019 American
Control Conference (ACC), July 2019, pp. 4454–4459.

[24] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2019.

[25] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018.
[Online]. Available: http://www.gurobi.com

4618

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 03:10:12 UTC from IEEE Xplore. Restrictions apply.

