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Abstract— We present a framework to synthesize control
policies for nonlinear dynamical systems from complex tem-
poral constraints specified in a rich temporal logic called
Signal Temporal Logic (STL). We propose a novel smooth
STL quantitative semantics called cumulative robustness, and
efficiently compute control policies through a series of smooth
optimization problems that are solved using gradient ascent
algorithms. Furthermore, we demonstrate how these techniques
can be incorporated in a model predictive control frame-
work. The advantages of combining the cumulative robustness
function with smooth optimization methods as well as model
predictive control are illustrated in case studies.

I. INTRODUCTION

In the last decade, formal methods have become powerful
mathematical tools not only for specification and verification
of systems, but also to enable control engineers to move
beyond classical notions such as stability and safety, and to
synthesize controllers that can satisfy much richer specifica-
tions [1]. For example, temporal logics such as Linear Tem-
poral Logic (LTL) [2] and Signal Temporal Logic (STL) [3]
have been used to define rich time-dependent constraints for
control systems in a wide variety of applications, ranging
from biological networks to multi-agent robotics [4], [5], [6].

The existing methods for temporal logic control can be
divided into two general categories: automata-based [1] and
optimization-based [7], [8]. In the first, a finite abstraction for
the system and an automaton representing the temporal logic
specifications are computed. A controller is then synthesized
by solving a game over the product automaton [1]. Even
though this approach has shown some promising results,
automata-based solutions are generally very computationally
expensive. The second approach leverages the definition of
quantitative semantics [9], [10], [11] for temporal logics that
interpret a formula with respect to a system trajectory by
computing a real-value (called robustness) measuring how
strongly a specification is satisfied or violated. Consequently,
the control problem becomes an optimization problem with
the goal of maximizing robustness.

In this paper, we propose a novel framework to synthesize
cost-optimal control policies for possibly nonlinear dynam-
ical systems under STL constraints. First, we introduce
a new quantitative semantics for STL, called cumulative
quantitative semantics or cumulative robustness degree. The
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traditional STL robustness degree [9] is very conservative
since it only considers the robustness at the most critical time
(the time that is closest to violation). On the other hand, we
cumulate the robustness over the time horizon of the specifi-
cation. This results in a robustness degree that is more useful
and meaningful in many control applications. Specifically,
we show that control policies obtained by optimizing the
robustness introduced here leads to reaching desired states
faster, and the system spends more time in those states.

We show how to extend smooth approximation techniques
in [8] to address the novel notion of cumulative robustness
introduced here. We then show how to leverage the smooth
cumulative robustness function to perform Model Predictive
Control (MPC) under STL constraints for nonlinear dynam-
ical systems using gradient ascent algorithms.

II. RELATED WORK AND CONTRIBUTIONS

In [11], the authors introduce an extension of STL, called
AvSTL, and propose a quantitative semantics for it. The
AvSTL quantitative semantics has some similarities with
the robustness proposed here, but computes the average
robustness over specification horizons instead of cumulating
the robustness. Moreover, the work in [11] only investigates
a falsification problem, while we consider a more general
control problem. A similar approach is also presented in [12]
in which robustness is defined using arithmetic and geometric
averages.

In [7], Karaman et al. demonstrate that temporal logic
control problems can be formulated as mixed integer linear
problems (MILP), avoiding the issues with state space ab-
straction and dealing with systems in continuous space. Since
this paper, many researchers have adopted this technique and
demonstrated Mixed Integer Linear or Quadratic Programs
(MILP/MIQP) are often more scalable and reliable than
automata-based solutions [13], [14]. However, MILP has an
exponential complexity with respect to the number of its
integer variables and the computational times for MILP-
based solutions are extremely unpredictable. These types
of solutions generally suffer when dealing with very large
and nested specifications. More recently, Pant et al. in [8]
have presented a technique to compute a smooth abstraction
for the traditional STL quantitative semantics defined in [9].
The authors show that control problems can be solved using
smooth optimization algorithms such as gradient descent in a
much more time efficient way than MILP. This technique also
works for any smooth nonlinear dynamics while MILP and
MIQP require the system dynamics to be linear or quadratic.
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We consider the problem of Model Predictive Control
(MPC) under temporal logics constraints that is based on
iterative, finite-horizon optimization of a plant model and its
input in order to satisfy a signal temporal logic specification.
The work in [5] employs MPC to control the plant to satisfy
a formal specification expressed in a fragment of LTL that
can be translated into finite state automata and [15] used
it for finite state systems and Büchi automata to synthesize
controllers under full LTL specification. MPC has also been
used in conjunction with mixed integer linear and quadratic
programs for temporal logic control [13], [16].

III. PRELIMINARIES

A. Signal Temporal Logic

Signal Temporal Logic (STL) was introduced in [3].
Consider a discrete unbounded time series τ ∶= {tk ∣k ∈ Z≥0}.
A signal is a function σ ∶ τ → Rn that maps each time point
tk ∈ R≥0 to an n-dimensional vector of real values σ[k],
with σi[k] being the ith component. Given a signal σ and
k ∈ Z≥0, σtk ∶= {σ[k′]∣k′ ≥ k} is the portion of the signal
starting at the kth time step of τ .

Definition 1 (STL Syntax):

ϕ ∶= ⊺ ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1UIϕ2, (1)
where φ, ϕ1, ϕ2 are formulas and ⊺ stands for the Boolean
constant True. We use the standard notation for the Boolean
operators. I = [k1, k2] denotes a bounded time interval
containing all time points (integers) starting from k1 up
to k2 and k2 > k1 ≥ 0. The building blocks of STL
formulas are predicates of the form µ ∶= l(σ) ≥ 0 where
l is a linear or nonlinear combination of the elements of
σ. In this paper, we assume that l is smooth. In order to
construct a STL formula, different predicates (µ) or STL
sub-formulas (ϕ) are recursively combined using Boolean
logical operators (¬,∨,∧) as well as temporal operators. UI

is the until operator. Other temporal operator can also be
derived from UI . FI is the finally or eventually operator
and GI is the globally or always operator. For instance,
F[0,5]G[0,10](σ1 > 0) means that σ1 must become positive
within 5 units of time in the future and stay positive for 10
steps after that; and (σ2 > 0)U[0,10](σ1 > 0) means that σ1

should become positive at a time point within 10 units of
time and σ2 must be always positive before that.

The authors in [9] introduce a quantitative semantics that
can be interpreted as “How much a signal satisfies or violates
a formula”. The quantitative valuation of a STL formula ϕ
with respect to a signal σ at the kth time step is denoted by
ρ(ϕ,σ, tk) and called the robustness degree.

Definition 2 (STL robustness):

ρ(⊺, σ, tk) ∶= +∞,
ρ(l(σ) ≥ 0, σ, tk) ∶= l(σ[k]),
ρ(¬ϕ,σ, tk) ∶= −ρ(ϕ,σ, tk),
ρ(ψ ∧ ϕ,σ, tk) ∶= min{ρ(ψ,σ, tk), ρ(ϕ,σ, tk)},
ρ(ψUIϕ,σ, tk) ∶= max

k′∈I
(min{ρ(ϕ,σ, tk+k′),

min
k′′∈[k,k+k′]

ρ(ψ,σ, tk′′)}).
(2)

The robustness degree for ∨, FI , and GI can be easily
derived [9]. The robustness degree is sound, meaning that:

ρ(ϕ,σ, tk) > 0⇒ σtk ⊧ ϕ,
ρ(ϕ,σ, tk) < 0⇒ σtk /⊧ ϕ. (3)

A formal definition for the horizon (hϕ) of a STL formula
ϕ is presented in [17]. Informally, it is the smallest time step
in the future for which signal values are needed to compute
the robustness for the current time point. For instance, the
horizon of the formula F[0,5]G[0,10](σ1 > 0) is 5+ 10 = 15.

In the rest of this paper, if we do not specify the time of
satisfaction or violation of a formula, we mean satisfaction
or violation at time 0 (i.e., σ ⊧ ϕ means σ0 ⊧ ϕ).

B. Smooth Approximation of STL Robustness Degree

The robustness degree that results from (2) is not differ-
entiable. This poses a challenge in solving optimal control
problems using the robustness degree as part of the objective
function. The authors in [8] introduce a technique for com-
puting smooth approximations of the robustness degree for
Metric Temporal Logic (MTL), which is based on smooth
approximations of the max and min functions:

Definition 3 (Smooth Operators):

m̃axβ(a1, . . . , am) ∶= 1
β

ln∑mi=1 e
βai ,

m̃inβ(a1, . . . , am) ∶= −m̃ax(−a1, . . . ,−am).
(4)

The approximation error approaches 0 as β goes to ∞. We
denote the smooth approximation of any function ρ by ρ̃.

IV. PROBLEM STATEMENT

Consider a discrete time continuous space dynamical sys-
tem of the following form:

σ[k + 1] = f(σ[k], u[k]),
σ[0] = γ, (5)

where σ[k] ∈ X ⊆ Rn is the state of the system at the kth
time step of τ ∶= {tk ∣k ∈ Z≥0}, X is the state space, and γ ∈ X
is the initial condition. u[k] ∈ U ⊆ Rm is the control input
at time step k that belongs to a hyper-rectangle space U =
[U1,U ′1]×. . .×[Um,U ′m]. f is a smooth function representing
the dynamics of the system. The ith component of σ, u,
f , and γ are denoted by σi, ui, fi, and γi, respectively.
The system trajectory (n-dimensional signal) produced by
applying control policy u = {u[k]} is denoted by ⟨σ,u⟩.

A specification over the state of the system is given as
a STL formula ϕ with horizon hϕ. We also consider a
cost function J ∶ X × U → R where J(σ[k], u[k]) is a
smooth function representing the cost of applying the control
input u[k] at state σ[k]. In the first problem, we intend to
determine a control policy u∗ = {u∗[k]∣k = 0, . . . , hϕ − 1}
over the time horizon of the specification ϕ such that ϕ is
satisfied, while optimizing the cumulative cost.

Problem 1 (Finite Horizon Control):

u∗ = arg min
hϕ−1

∑
k=0

J(σ[k], u[k]),

s.t. ⟨σ,u⟩ ⊧ ϕ.
(6)
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Fig. 1. The workspace for the vehicle in Example 1. The goal is to visit
regions 1 or 2 (cyan) in 3 steps and go to region 3 (green) in 7 steps after
that and stay there for at least 2 steps, while avoiding region 4 (red).

Furthermore, we intend to find the control policy that results
in highest possible robustness degree.

Example 1: Consider an autonomous vehicle on a two
dimensional square workspace (Fig. 1). The state of the
vehicle consists of the horizontal and vertical position of
its center as well as the heading angle (σ = [x, y, θ]) The
state space is X = [0,7] × [0,7] × R. In Fig. 1, the gray
ellipse represents the vehicle. The state evolves according to
the following dynamics:

x[k + 1] = x[k] + cos θ[k]v[k]∆t,
y[k + 1] = y[k] + sin θ[k]v[k]∆t,
θ[k + 1] = θ[k] + v[k]ω[k]∆t,

(7)

where u[k] = [v[k], ω[k]] is the control input and belongs
to the space U = [0,2] × [−0.75,0.75]. ∆t is the time step
size. We consider the cost function J(σ[k], u[k]) = ∣∣σ[k +
1] − σ[k]∣∣22, assigning higher costs to motions over longer
distances. Consider the following specification: “Eventually
visit region 1 or 2 (cyan) within 6 seconds. Afterwards, move
to region 3 (green) in at most 4 seconds and stay there for
at least 2 seconds, while always avoiding the unsafe region
4 (red).” Assuming ∆t = 0.1, this translates to:

φ1 = (G[0,40]¬µ4)U[0,60][(µ1 ∨ µ2) ∧ (F[0,40]G[0,20]µ3)],
(8)

where µi is the logical formula representing region i:
µ1 = x > 4 ∧ x < 7 ∧ y > 0 ∧ y < 2,
µ2 = x > 0 ∧ x < 2 ∧ y > 4 ∧ y < 7,
µ3 = x > 5 ∧ x < 7 ∧ y > 5 ∧ y < 7,
µ4 = x > 2 ∧ x < 5 ∧ y > 2 ∧ y < 5.

Note that time step horizon of φ1 is hφ1 = 60+40+20 = 120.
In the next problem, a time horizon hM is specified by

the user such that hM ≥ hϕ and we intend to find the
control policy u∗ = {u∗[k]∣k = 0, . . . , hM} that results in
the satisfaction of a given specification ϕ at all times.

Problem 2 (Model Predictive Control for Finite Horizon):

u∗ = arg min
hϕ+hM−1

∑
k=0

J(σ[k], u[k]),

s.t. ⟨σ,u⟩ ⊧G[0,hM ]ϕ.
(9)

Example 2: Consider a linear system as follows:

x[k + 1] = [1 0.5
0 0.8

]x[k] + [0
1
]u[k], (10)

where x ∈ R2, x1[0] = x2[0] = 0, and u[k] ∈ R. Consider
the following STL specification.

φ2 = F[0,4]µ5 ∧F[0,4]µ6, (11)

where µ5 = (x1 > 2 ∧ x1 < 4) and µ6 = (x1 < −2 ∧ x1 > −4).
φ2 requires the value of x1 (the first component in x) to
satisfy both µ5 and µ6 within 4 time steps in the future.
Note that in this example, hφ2 = 4. Globally satisfying this
specification for hM = 15 time steps (G[0,15]φ2) means that
we require x1 to periodically alternate between µ5 and µ6.

V. SMOOTH CUMULATIVE ROBUSTNESS

The robustness degree from Definition 2 has been widely
used in the past few years to solve control problems in
various applications. Its soundness and correctness properties
have enabled researchers to reduce complex control problems
to manageable optimization problems. However, this defini-
tion is very conservative, since it only considers the system
performance at the most critical time. Hence, any information
about the performance of the system at other times is lost.
Inspired by [11], we introduce an alternative approach to
compute the robustness degree, which we call the cumulative
robustness. This robustness is less conservative than (2), and
generally results in better performance if employed to solve
control problems such as (6) (see Section VIII).

For any STL formula ϕ, we define a positive cumulative
robustness ρ+(ϕ,σ, tk) ∈ R≥0 and a negative cumulative
robustness ρ−(ϕ,σ, tk) ∈ R≤0. For this purpose, we use two
functions R+ ∶ R → R≥0 and R− ∶ R → R≤0, which we call
the positive and negative rectifier, respectively.

Definition 4 (Rectifier Function):

R+(a) = max(0, a),
R−(a) = min(0, a). (12)

We can use (4) to smoothly approximate both rectifiers.
The positive and negative cumulative robustness are recur-

sively defined as follows:
Definition 5 (Cumulative Robustness):

ρ+(l(σ) ≥ 0, σ, tk) ∶= R+(l(σ[k])),
ρ−(l(σ) ≥ 0, σ, tk) ∶= R−(l(σ[k])),
ρ+(¬ϕ,σ, tk) ∶= −ρ−(ϕ,σ, tk),
ρ−(¬ϕ,σ, tk) ∶= −ρ+(ϕ,σ, tk),
ρ+(ψ ∨ ϕ,σ, tk) ∶= max{ρ+(ψ,σ, tk), ρ+(ϕ,σ, tk)},
ρ−(ψ ∨ ϕ,σ, tk) ∶= max{ρ−(ψ,σ, tk), ρ−(ϕ,σ, tk)},
ρ+(ψ ∧ ϕ,σ, tk) ∶= min{ρ+(ψ,σ, tk), ρ+(ϕ,σ, tk)},
ρ−(ψ ∧ ϕ,σ, tk) ∶= min{ρ−(ψ,σ, tk), ρ−(ϕ,σ, tk)},
ρ+(FIϕ,σ, tk) ∶= ∑

k′∈I
ρ+(ϕ,σ, tk+k′),

ρ−(FIϕ,σ, tk) ∶= ∑
k′∈I

ρ−(ϕ,σ, tk+k′),

ρ+(GIϕ,σ, tk) ∶= min
k′∈I

ρ+(ϕ,σ, tk+k′),
ρ−(GIϕ,σ, tk) ∶= min

k′∈I
ρ−(ϕ,σ, tk+k′),

ρ+(ψUIϕ,σ, tk) ∶= ∑
k′∈I

(min{ρ+(ϕ,σ, tk+k′),

min
k′′∈[k,k+k′]

ρ+(ψ,σ, tk′′)}),

ρ−(ψUIϕ,σ, tk) ∶= ∑
k′∈I

(min{ρ−(ϕ,σ, tk+k′),

min
k′′∈[k,k+k′]

ρ−(ψ,σ, tk′′)}).

(13)
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An extension to STL, called AvSTL, was introduced in
[11]. The authors employed AvSTL to solve falsification
problems and did not consider the general control problem.
The cumulative robustness for STL as defined in Definition
5 has two main differences from AvSTL. First, we consider
signals in discrete time. Second, AvSTL computes the av-
erage robustness of FI and UI over their time intervals,
while we cumulate the robustness. Our purpose is to reward
trajectories that satisfy the specification in front of FI and
UI for longer time periods.

The positive cumulative robustness can be interpreted as
robustness for portions of the signal that satisfy the formula
and the negative cumulative robustness can be interpreted as
robustness for portions of the signal that violate the formula.
Our motivation for defining this alternative robustness degree
was to modify the robustness of the finally operator in order
to cumulate the robustness for all the times in which the
formula is true, whereas the traditional robustness degree
only considers the most critical time point and does not
take other portions of the signal into account. However, this
cannot be done in one robustness degree, since the positive
and negative values of robustness may cancel each other in
time. We divide the robustness into two separate positive and
negative values to avoid this issue.

The following example demonstrates the advantages of the
cumulative robustness (13) in comparison with (2).

Example 3: Consider ϕe = F[0,10](σ > 1 ∧ σ < 3) over
a one dimensional signal σ in a discrete time space τ =
{0,1,2, . . .}. Fig. 2 demonstrates two different instances of
this signal σ(1) and σ(2) starting at σ[0] = 0, both satisfying
the formula. ϕe has the same robustness score with respect to
σ(1) and σ(2) at time 0, ρ(ϕe, σ(1),0) = ρ(ϕe, σ(2),0) = 1.
This is because the traditional robustness degree of the finally
operator FIψ only returns the robustness of ψ at the most
critical time point in I , which is the same for both instances
in this case. However, the positive cumulative robustness of
FIψ adds the robustness at all times in which ψ is satisfied,
hence rewarding signals that reach the condition specified
by ψ faster and stay in the satisfactory region longer. In this
example, ρ+(ϕe, σ(1),0) = 2.5 while ρ+(ϕe, σ(2),0) = 7.5.
This is a desirable property in many control applications
since by synthesizing controls that optimize the cumulative
robustness for the finally operator, we are producing a
trajectory of the system that reaches the specified condition
as soon as possible and holds it true for as long as possible.

By comparing Definition 5 with Definition 2, it is easy
to see that a STL formula is satisfied if the corresponding
positive robustness is strictly positive.

Proposition 1:

ρ+(ϕ,σ, tk) > 0⇔ ρ(ϕ,σ, tk) > 0⇒ σtk ⊧ ϕ. (14)
Remark 1: The causes of non-smoothness in (13) are the

max, min, R+, and R− functions. Therefore, any cumulative
robustness function can be smoothly approximated by replac-
ing any appearance of these terms with their corresponding
smooth approximations from (4). The smooth approximation
of ρ+ and ρ− are denoted by ρ̃+ and ρ̃−.

0 1 2 3 4 5 6 7 8 9 10
0
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1

1.5

2
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Fig. 2. Two discrete time signals that satisfy ϕe = F
[0,10](σ > 1 ∧

σ < 3) with similar robustness ρ(ϕe, σ,0) but different positive cumulative
robustness ρ+(ϕe, σ,0) .

VI. SMOOTH OPTIMIZATION

In this section, our approach to solve Problem 1 is briefly
explained. A more detailed explanation is provided in the
long version of the paper 1.

To ensure that the state σ always remains in the state space
X , we add the following requirement to specification ϕ:

ϕ← ϕ ∧G[0,hϕ](σ ∈ X ). (15)

We aim to use ρ̃+ in a gradient ascent setting similar
to [8] to solve this problem. However, note that ρ+ = 0
any time that a formula is violated. Therefore, ∇ρ+ = 0
when ρ+ = 0 unless the formula is on the boundaries of
violation and very close to being satisfied. As a result, ρ̃+

is almost guaranteed to fall in its local minimum when one
initializes the gradient ascent algorithm for ρ̃+, unless there is
significant a priori knowledge about the system. The negative
cumulative robustness ρ− is not helpful either since there is
no soundness theorem associated with it (see Section V).

We can circumvent this setback if we initialize the gradient
ascent algorithm such that the specification is already satis-
fied and we only intend to maximize the level of satisfaction
and minimize the cost. Hence, we propose a three-stage
algorithm. The first stage aims to find a control policy that
minimally satisfies ϕ, the second stage aims to maximize ρ̃+,
and the third stage aims to minimize the cumulative cost. In
each stage, one optimization problem is solved.

Given a generic smooth objective function Q(σ,u), an
initial control policy uι = {uι[k]∣k = 0, . . . , hϕ − 1}, and
a termination condition T , we use gradient ascent [18] to
find the optimal control policy u∆. We start by initializing a
control policy uι for every time step k ∈ {0, . . . , hϕ−1}, and
computing the corresponding system trajectory ⟨σ,u⟩ from
the system dynamics (5). At each gradient ascent iteration i,
we update the control policy for every time step according to
u← u+αi∇Q where αi > 0. In the case studies presented in
this paper, we used decreasing gradient coefficients αi+1 <
αi. However, one can employ other strategies that might
work more efficiently depending on the application [18].
Each component of ∇Q can be computed as:

∇pQ[k] = ∂Q

∂up[k]
+

n

∑
q=1

( ∂Q

∂σq[k + 1]
.
∂fq[k + 1]
∂up[k]

), (16)

1https://arxiv.org/abs/1904.11611
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for p = 1, . . . ,m and k = 0, . . . , hϕ − 1. We continue this
process until we find a control policy u∆ that satisfies T .

Recall that the problem setup in Section IV included
constraints for both state (σ[k] ∈ X ) and control (u[k] ∈ U).
we have already dealt with state constraints as part of the
specification (15). Considering the fact that U = [U1,U ′1] ×
. . .× [Um,U ′m] is assumed to be a hyper-rectangle, the input
constraints are included using a projected gradient.

up[k]←max{min{up[k],U ′p},Up}. (17)

At any point in the optimization process, if a component of
the control input up[k] falls outside of the admissible interval
[Up,U ′p], we simply project it into the interval.

In the first stage, we randomly initialize a control pol-
icy u0 = {u0[k]∣k = 0, . . . , hϕ − 1} and use the smooth
approximation for traditional robustness ρ̃ as the objective
function in gradient ascent, only to find a control policy
that minimally satisfies the specification (Hence, in this
stage T is ρ̃ > 0). In the second stage, we use the policy
that we find in stage 1 to initialize a new gradient ascent
with the objective function ρ̃+ and termination condition
∇ρ+ < ε where ε is a small positive number. Note that
ρ̃+ is guaranteed to be strictly positive at the first iteration
(i = 0) due to (14). Therefore, it will remain strictly positive
as we proceed in the gradient ascent algorithm since this
algorithm is designed such that the objective function only
increases at each iteration [18]. This prohibits the algorithm
to ever fall in a local minimum at ρ̃+ = 0. At the end
of the second stage, we have a control policy u∆2 with a
maximal level of cumulative robustness. However, we intend
to minimize the cumulative cost ∑k J in Problem 1. We
perform a third gradient ascent with the objective function
−∑k J and control policy initialized at u∆2 . In other words,
we are updating the entire control policy gradually in order
to decrease the cumulative cost at the expense of cumulative
robustness. This stage must terminate before the specification
is violated (i.e., while the cumulative robustness is still
strictly positive). Hence, the termination condition at this
stage is ρ̃+ < ξ with ξ > 0.

A small choice for ξ results in a control policy with an
almost optimal cost that minimally satisfies ϕ, while a large
choice for ξ results in a control policy with a higher level of
cumulative robustness that is sub-optimal with respect to the
cost. The user can tune ξ to achieve the desirable balance
between the level of satisfaction and cost-optimality.

Remark 2: If stage 1 does not terminate, it means that ϕ
is infeasible and we do not need to proceed to stage 2.

VII. MODEL PREDICTIVE CONTROL

In this section, we describe our solution to Problem 2.
Note that while Problem 1 requires specification ϕ to be
satisfied at time 0 (i.e., ⟨σ,u∗⟩0 ⊧ ϕ), Problem 2 requires it
to be satisfied at all times in a hM horizon (i.e., ⟨σ,u∗⟩tk ⊧
ϕ ∀k ∈ {0, . . . , hM} or equivalently ⟨σ,u∗⟩0 ⊧G[0,hM ]ϕ).

The following procedure is performed to solve this prob-
lem. For time step k = 0, we fix σ[0] and use the algorithm

described in the previous section to synthesize control policy
uh0 = {uh0[k′]∣k′ = 0, . . . , hϕ − 1}. This ensures that φ is
satisfied at time t0. Now, we only execute uh0[0]. At time k =
1, we fix σ[1], use the algorithm presented in the previous
section to synthesize uh1 = {uh1[k′]∣k′ = 0, . . . , hϕ − 1},
and only execute uh1[0], which ensure satisfaction of ϕ at
time t1. We continue this process until we reach k = hM .
Consequently, G[0,hM ]ϕ is guaranteed to be satisfied for the
following control policy, assuming that it is feasible.

u∗[k] = uhk[0] k = 0, . . . hM . (18)

The smooth optimization procedure becomes particularly
advantageous when employed instead of mixed integer pro-
gramming in a model predictive control setting, since a sep-
arate optimization problem needs to be solved at every time
step and smooth optimization has a much greater potential
for being fast enough to be applied online. Moreover, MILP
solvers are very sensitive to the changes in the initial state γ,
which is challenging since one has to solve a new MILP from
scratch for any changes that occur in γ. This becomes a much
more complex challenge when a MILP-based approach is
used for multi-agent systems [19]. On the other hand, smooth
gradient ascent is much less sensitive to small changes in
individual variables such as initial state γ [18].

Similar to [13], we can stitch together trajectories of length
hM using a receding horizon approach to produce trajectories
that satisfy G[0,∞)ϕ. However, this does not guarantee recur-
sive feasibility. In other words, we need to make sure that the
resulting trajectory from the optimal controller consists of a
loop. If this is the case, we can terminate the computation and
keep repeating the control loop forever, which guarantees the
satisfaction of the specification at all times, since we know
that each loop satisfies the specification.

Formally, we add the following constraint to our optimiza-
tion problem at every step.

∃k ∈ τ,∃K ∈ N s.t. σ[k +K] = σ[k],K > hϕ. (19)

This ensures that the resulting system trajectory contains
a loop. If we find a solution to the optimization problem
with positive robustness (ρ > 0), this loop satisfies the given
specification ϕ. Therefore, repeating the control strategy that
produced this loop forever results in the satisfaction of the
formula at all times, ensuring recursive feasibility.

We use a brute force approach to find k,K that satisfy
(19). In other words, we start by guessing values for these
parameters and keep changing them until we find values for
which a solution to the optimization problem exists. Fixing
the values of k and K eliminates the quantifiers in (19) and
turns it into a linear constraint which is handled easily by
any gradient descent solver through projection methods.

VIII. CASE STUDY

In this section, we illustrate how our algorithms are able to
solve Examples 1 and 2 in Section IV. All implementations
were performed using MATLAB on a MacBook Pro with a
3.3 GHz Intel Core i7 processor and 16 GB of RAM.
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Fig. 3. The optimal path for two vehicles in Example 1 with: (a)
maximal cumulative robustness ρ̃+, (b) maximal traditional robustness ρ̃.
(The numbers next to each path indicate time in seconds.)
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Fig. 4. Evolution of x1 resulting from optimal control policies

A. Example 1: Path Planning for Autonomous Vehicles

Consider the system and specification of Example 1 with
the dynamics of (7) and specification φ1 (8). Assume that
there are two vehicles (yielding a 6 dimensional state space).
Each vehicle starts from a different initial position and
orientation, but follows the same dynamics. Both are required
to follow the specification φ1 while avoiding collision. Recall
that the objective is to visit one of the cyan regions in 6
seconds and go to the green destination in at most 4 seconds
after that, while avoiding the red region (Fig. 1). The solution
was computed in 18.3 seconds and the optimal path for each
vehicle is shown in Fig. 3(a). The optimal path with respect
to the traditional robustness score was also computed in
13.4 seconds and demonstrated in Fig. 3(b). It is obvious
from these figures that optimizing the cumulative robustness
results in paths in which the vehicles get to their respective
destinations faster and remain there longer.

B. Example 2: MPC for a Linear System

Consider the system and specification of Example 2 with
the dynamics shown in (10) and specification φ2 presented
in (11). We used the MPC framework as described in Section
VII to solve Example 2 with optimal cumulative robustness.
The computation took 6.73 seconds. Additionally, we com-
puted the control policy derived from only optimizing the
traditional robustness ρ̃.

The corresponding evolution of x1 according to the system
dynamics (10) for both cases is presented in Fig. 4. Accord-
ing to (11), the goal is for x1 to periodically visit both of
the green regions in this figure, always visiting each region
within at most 4 time steps in the future. Fig. 4 shows that
both control policies satisfy this requirement. However, the
trajectory that results from optimizing ρ̃+ (dashed blue) tends

to stay in the green regions as long as possible. On the other
hand, by optimizing the traditional STL robustness ρ̃, we are
only ensuring that the green regions are visited once every 4
time steps, and do not have any control over the duration of
satisfaction. As shown in Fig. 4, the dotted black trajectory
visits the green regions, but does not stay in them and even
goes beyond the green regions three times.
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