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Abstract— We address the problem of optimally controlling
Connected and Automated Vehicles (CAVs) arriving from two
roads at a merging point where the objective is to jointly
minimize the travel time and energy consumption of each CAV
subject to a speed-dependent safety constraint and to speed
and acceleration constraints. Implementing the decentralized
solution to this problem obtained in prior work is limited by
the computational cost when constraints become active on an
optimal CAV trajectory and by the presence of noise in the
vehicle dynamics. In this paper, we combine the unconstrained
optimal control solution (treated as a reference trajectory for
each CAV) with control barrier functions (CBFs) that guarantee
the satisfaction of all constraints and provide robustness to
noise. To accomplish this, we design a joint optimal control
and barrier function (OCBF) controller where a CBF-based
controller tracks the optimal control trajectory for each CAV
in the presence of noise. In addition, when considering more
complex objective functions for which analytical optimal control
solutions are unavailable, we adapt the CBF method to such
objectives. Simulation examples are included to compare the
performance of the OCBF controller to optimal solutions (when
available) and to a baseline provided by human-driven vehicles
with results showing significant improvements in both metrics.

I. INTRODUCTION

Traffic management at merging points (usually, highway
on-ramps) is one of the most challenging problems within
a transportation system in terms of safety, congestion, and
energy consumption, in addition to being a source of stress
for many drivers [9], [11], [14]. Advances in next-generation
transportation system technologies and the emergence of
Connected and Automated Vehicles (CAVs), also known as
self-driving cars or autonomous vehicles, have the poten-
tial to drastically improve a transportation network’s per-
formance by better assisting drivers in making decisions,
ultimately reducing energy consumption, air pollution, con-
gestion and accidents. One of the very early efforts exploiting
the benefit of CAVs was proposed in [5], where an optimal
linear feedback regulator was introduced for the merging
problem to control a single string of vehicles. An overview
of automated vehicle-highway systems was provided in [12].

In our recent work [18] we addressed the merging problem
through a decentralized optimal control (OC) formulation
and derived explicit analytical solutions for each CAV when
no constraints are active. We have extended the solution to
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include constraints [17], in which case the computational
cost depends on the number of constraints, some of which
may become recursively active. Thus, we have found this to
get potentially prohibitive for a CAV to determine through
on-board resources. In addition, our analysis has thus far
assumed no noise in the vehicle dynamics and sensing
measurements, and the dynamics precluded nonlinearities.

To address the limitations above, one can adopt on-line
control methods such as Model Predictive Control (MPC)
or the Control Barrier Function (CBF) method. In MPC
(e.g., [3], [7], [8]) time is normally discretized and an
optimization problem is solved at each time instant with
the addition of appropriate inequality constraints; then the
system dynamics are updated. Since both control and state
variables are considered as the decision variables in the op-
timization problem, MPC is very effective for problems with
simple (usually linear or linearized) dynamics, objectives and
constraints. The CBF approach [10], [2], [15] can overcome
some shortcomings of MPC. Unlike MPC, the CBF method
does not use states as decision variables in its optimization;
instead, any continously differentiable state constraint is
mapped onto a new constraint on the control input and can
ensure forward invariance of the associated set, i.e., a control
input that satisfies this new constraint is guaranteed to also
satisfy the original constraint. This allows the CBF method to
be effective for complex objectives, nonlinear dynamics, and
constraints. We have adopted this approach for the merging
problem in recent work [16] and shown that it provides good
approximations of the analytically obtained OC solutions.

The contribution of this paper is to combine the OC and
CBF methods when the OC solution is available, leading
to a joint Optimal Control and Barrier Function (OCBF)
method. This allows us to share all the advantages of OC
and CBFs. In particular, when noise is present in the vehicle
dynamics, the OCBF controller for a CAV tracks the optimal
CAV trajectory and handles potential constraint violations. In
addition, when the OC solution is unavailable, we show that
the CBF method can still be employed and provide solutions
which result in significantly better performance than that of
human-driven vehicles.

II. PROBLEM FORMULATION

In this section, we first review the problem formulation
from [18] so as to set the stage for the extensions to
the merging problem which we address in this paper. The
merging problem arises when traffic must be joined from
two different roads, usually associated with a main lane and
a merging lane as shown in Fig.1. We consider the case where
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all traffic consists of CAVs randomly arriving at the two lanes
joined at the Merging Point (MP) M where a collison may
occur. The segment from the origin O or O′ to the merging
point M has a length L for both lanes, and is called the
Control Zone (CZ). We assume that CAVs do not overtake
each other in the CZ. A coordinator is associated with the
MP whose function is to maintain a First-In-First-Out (FIFO)
queue of all CAVs regardless of lanes based on their arrival
time at the CZ and to enable real-time communication with
the CAVs that are in the CZ as well as the last one leaving
the CZ. The FIFO assumption imposed so that CAVs cross
the MP in their order of arrival is made for simplicity and
often to ensure fairness, but can be relaxed through dynamic
resequencing schemes, e.g., as described in [19].

Fig. 1. The merging problem

Let S(t) be the set of the FIFO-ordered indices of all
CAVs located in the CZ at time t along with the CAV (whose
index is 0 as shown in Fig.1) that has just left the CZ. Let
N(t) be the cardinality of S(t). Thus, if a CAV arrives at
time t, it is assigned the index N(t). All CAV indices in
S(t) decrease by one when a CAV passes over the MP and
the vehicle whose index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the
lane to which it belongs takes the form[

ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
, (1)

where xi(t) denotes the distance to the origin O (O′) along
the main (merging) lane if the vehicle i is located in the main
(merging) lane, vi(t) denotes the velocity, and ui(t) denotes
the control input (acceleration). We consider two objectives
for each CAV subject to three constraints, as detailed next.

Objective 1 (Minimize travel time): Let t0i and tmi denote
the time that CAV i ∈ S(t) arrives at the origin O or O′ and
the merging point M , respectively. We wish to minimize the
travel time tmi − t0i for CAV i.

Objective 2 (Minimize energy consumption): We also
wish to minimize the energy consumption for each CAV
i ∈ S(t) expressed as

Ji(ui(t)) =

∫ tmi

t0i

C(ui(t))dt, (2)

where C(·) is a strictly increasing function of its argument.
Constraint 1 (Safety constraints): Let ip denote the index

of the CAV which physically immediately precedes i in the
CZ (if one is present). We require that the distance zi,ip(t) :=
xip(t)− xi(t) be constrained by the speed of i ∈ S(t):

zi,ip(t) ≥ ϕvi(t) + δ, ∀t ∈ [t0i , t
m
i ], (3)

where ϕ denotes the reaction time (as a rule, ϕ = 1.8
is used, e.g., [13]). If we define zi,ip to be the distance
from the center of CAV i to the center of CAV ip, then
δ is a constant determined by the length of these two CAVs
(generally dependent on i and ip but taken to be a constant
over all CAVs for simplicity).

Constraint 2 (Safe merging): There should be enough safe
space at the MP M for a merging CAV to cut in, i.e.,

z1,0(tm1 ) ≥ ϕv1(tm1 ) + δ. (4)

Constraint 3 (Vehicle limitations): Finally, there are con-
straints on the speed and acceleration for each i ∈ S(t):

vmin ≤ vi(t) ≤ vmax,∀t ∈ [t0i , t
m
i ],

umin ≤ ui(t) ≤ umax,∀t ∈ [t0i , t
m
i ],

(5)

where vmax > 0 and vmin > 0 denote the maximum and
minimum speed allowed in the CZ, umin < 0 and umax > 0
denote the minimum and maximum control, respectively.

The common way to minimize energy consumption is by
minimizing the control input effort u2i (t). By normalizing
travel time and u2i (t), and using α ∈ [0, 1], we construct a
convex combination as follows:

min
ui(t)

Ji(ui(t)) =

∫ tmi

t0i

(
α+

(1− α) 1
2u

2
i (t)

1
2 max{u2max, u2min}

)
dt.

(6)
Letting β :=

αmax{u2
max,u

2
min}

2(1−α) , we obtain a simplified form:

min
ui(t)

Ji(ui(t)) := β(tmi − t0i ) +

∫ tmi

t0i

1

2
u2i (t)dt, (7)

where β ≥ 0 denotes a weight factor that can be adjusted to
penalize travel time relative to the energy cost.

Then, we have the following problem formulation:
Problem 1: For each CAV i ∈ S(t) governed by dynam-

ics (1), determine a control law such that (7) is minimized
subject to (1), (3), (4), (5), given the initial time t0i and the
initial and final conditions xi(t0i ) = 0, xi(tmi ) = L, vi(t0i ).

While in [18], we assumed the absence of any noise in (1),
in this paper we will include the possibility of system model
uncertainties, errors due to signal transmission, as well as
computation errors. Therefore, we add two noise terms in
(1) to get [

ẋi(t)
v̇i(t)

]
=

[
vi(t) + wi,1(t)
ui(t) + wi,2(t)

]
(8)

where wi,1(t), wi,2(t) denote two random processes defined
in an appropriate probability space.
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III. JOINT OPTIMAL CONTROL AND BARRIER
FUNCTIONS

In this section, we use the CBF method to track a CAV
trajectory obtained through OC while taking advantage of
the robustness to noise that the CBF approach can offer.

We need to distinguish between the following two cases:
• (i) ip = i−1, i.e., ip is the CAV immediately preceding
i in the FIFO queue (such as CAVs 3 and 5 in Fig. 1),

• (ii) ip < i− 1 (such as CAVs 2 and 4 in Fig.1), which
implies CAV i− 1 is in a different lane from i.

We can solve Problem 1 for all i ∈ S(t) in a decentralized
way, in the sense that CAV i can solve it using only its own
local information (position, velocity and acceleration) along
with that of its “neighbor” CAVs i− 1 and ip. Observe that
if ip = i− 1, then (4) is a redundant constraint. Otherwise,
we need to consider (3) and (4) independently.

A. Optimal Control Method

We briefly review the OC analysis in [18] so as to make
our analysis as self-contained as possible. We consider (7) as
our objective function and get the following unconstrained
optimal control, speed, and position profiles:

u∗i (t) = ait+ bi (9)

v∗i (t) =
1

2
ait

2 + bit+ ci (10)

x∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di (11)

where ai, bi, ci and di are integration constants. In case (i),
ai, bi, ci, di and tmi can be solved by five nonlinear algebraic
equations, and these five algebraic equations become more
complicated in case (ii).

Since we aim for the solution to Problem 1 to be obtained
on-board each CAV, it is essential that the computational cost
of solving these five algebraic equations for integration con-
stants in (9)-(11) be minimal. If MATLAB is used, it takes
less than 1 second to solve these five algebraic equations
(Intel(R) Core(TM) i7-8700 CPU @ 3.2GHz 3.2GHz). On
the other hand, when the constraints (3), (4), (5) become
active, a complete OC solution can still be obtained [17],
[6], but the computation time varies between 3 and 30
seconds depending on whether ip is also safety-constrained
or not. This motivates the use of CBFs, as reviewed next, to
obtain sub-optimal but still feasible solutions with minimal
computational effort.

B. Control Barrier Function Method

As shown in [16], the CBF method allows us to deal with
nonlinear systems and to consider more complex objective
functions than (7). In particular, we can consider:

min
ui(t)

Ji(ui(t)) := β(tmi − t0i ) +

∫ tmi

t0i

fv(t)dt, (12)

where fv(t) represents a more practically realistic energy
model. As an example, we have adopted in [16] the following

fuel consumption model from [4], which describes fuel
consumed per second as

fv(t) = fcruise(t) + faccel(t),

fcruise(t) = ω0 + ω1vi(t) + ω2v
2
i (t) + ω3v

3
i (t),

faccel(t) = (r0 + r1vi(t) + r2v
2
i (t))ui(t).

(13)

where ω0, ω1, ω2, ω3, r0, r1 and r2 are positive coefficients
(typical values are reported in [4]). It is assumed that during
braking, i.e., ui(t) < 0, no fuel is consumed. Note that (12)
is hard to solve with OC analysis as in the previous section.
However, in the CBF approach this can be done numerically.

In the CBF method, we do not explicitly optimize the
travel time shown in (12). Instead, we use a control Lyapunov
function (CLF) [1] to drive vi(t) to a desired speed such that
the travel time is optimized. In [16], we define an output
yi(t) := vi(t)− vmax, and choose a CLF V (yi(t)) = y2i (t).
Any control input ui(t) should satisfy, for all t ∈ [t0i , t

m
i ],

LfV (yi(t)) + LgV (yi(t))ui(t) + εV (yi(t)) ≤ δi(t) (14)

where ε > 0 and δi(t) is a relaxation variable [1] that
makes the requirement vi(t) = vmax to be treated as a soft
constraint. Thus, we seek to achieve Objective 1 indirectly
and consider Objective 2 directly, replacing (12) by:

min
ui(t),δi(t)

Ji(ui(t), δi(t)) :=

∫ tmi

t0i

fv(t) + βδ2i (t)dt (15)

Since Constraints 1, 2 and part of 3 do not involve the control
input, we use CBFs to find new constraints on the control
input as detailed in [16]. When these new constraints are
satisified, Constraints 1-3 are also guranteed to be satisified.
We use the Quadratic Programing (QP) method following
from [2] to solve (15), i.e., we transform (15) into a sequence
of QPs by partitioning the time interval [t0i , t

m
i ] into equal

time intervals of length ∆t: {[t0i +k∆t, t0i +(k+1)∆t)}, k =
0, 1, 2, . . . At each time step defined by t = t0i + k∆t, we
solve the QP where the decision variables are the control
ui(t) (fixed over the time step t) and the CLF relaxation
δi(t), thus obtaining an optimal control u∗i (t). Then, over
interval [t0i + k∆t, t0i + (k + 1)∆t), we update the system
dynamics (1) using u∗i (t). Thus, all CAVs can safely pass
over the merging point M while minimizing Ji(ui(t), δi(t))
within each time interval, thus jointly minimizing the energy
consumption captured by fv(t) and travel time (indirectly)
through the minimization of δ2i . By adjusting the weight β
in (15), we can trade off between these two objectives.

C. Joint Optimal Control and Barrier Function Method
Suppose that an OC solution is available for the objective

(7), obtained through (9)-(11). Our goal here is to combine
this OC solution with a CBF-based controller whose goal is
to track the former as closely as possible. Thus, instead of
seeking to drive vi(t) to vmax as in the previous section,
we aim to track the optimal speed v∗i (t) obtained through
(9)-(11). In particular, we define a controller aiming to drive
vi(t) to vref (t) where

vref (t) =
x∗i (t)

xi(t)
v∗i (t) (16)
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and x∗i (t), v
∗
i (t) are the unconstrained optimal position and

speed profiles from (11) and (10). If xi(t) > x∗i (t), then
vref (t) < v∗i (t), thus automatically reducing (or eliminating)
the tracking position error. This approach can also address
the practical fact, observed in [16], that seeking to drive vi(t)
to vmax is overly “aggressive” in reducing travel time in (7)
at the expense of the energy component (even with small
values of the weight β in (7)).

An alternative form for vref (t) is

vref (t) = e
(x∗i (t)−xi(t))

σ v∗i (t) (17)

where σ > 0. While vref (t) in (16) depends heavily on the
exact value of xi(t), an advantage of (17) is that it allows
vref (t) to depend only on the position error.

Using either form of vref (t), we can now proceed as in
(14) and define an output yi(t) := vi(t) − vref (t) and a
CLF V (yi(t)) = y2i (t). Then, any control input ui(t) should
satisfy, for all t ∈ [t0i , t

m
i ],

LfV (yi(t)) + LgV (yi(t))ui(t) + εV (yi(t)) ≤ δi(t) (18)

where δi(t) is again a relaxation variable that makes the
requirement vi(t) = vref (t) to be treated as a soft constraint.

Along the same lines, we now seek a control input ui(t)
in the CBF method which tracks the unconstrained optimal
control u∗i (t) through a CBF controller aiming to drive ui(t)
to uref (t) defined by

uref (t) =
x∗i (t)

xi(t)
u∗i (t) (19)

where u∗i (t) is the unconstrained optimal control from (9).
An alternative, similar to (16), is to define uref (t) as

uref (t) = e
(x∗i (t)−xi(t))

σ u∗i (t). (20)

Applying the CBF approach as described in Section III-B,
we replace the travel time in (7) by the slack variable δi(t)
in (18) and consider the objective function:

min
ui(t),δi(t)

Ji(ui(t), δi(t))=

∫ tmi

t0i

(
βδ2i (t)+

1

2
(ui(t)−uref (t))2

)
dt,

(21)
subject to (8), (3), (4), (5) and (18), the initial and terminal
conditions xi(t0i ) = 0, xi(tmi ) = L, and given t0i , vi(t

0
i ).

Thus, we have combined the CBF method and the OC
solution by using (19) or (20) to link the optimal position
and acceleration to uref (t), and use (16) or (17) in the
CLF (vi(t) − vref (t))2 to combine with (21). We refer to
the resulting control ui(t) in (21) as the OCBF control. As
described in Section III-B, in order to solve (21) we once
again transform all the constraints (3), (4), (5) to constraints
on the control only, then we discretize time and solve a QP
over each time step with ui(t), δi(t) as decision variables.
The optimal solution, u∗i (t), for time step t is used to update
(8) over the corresponding time interval.

Note that in solving (21) we can apply either (16) or (19)
(similarly, (17) or (20)), or we can apply both (16) and (19).
As illustrated in our simulation examples in Section IV, the
use of only (16), yields an OCBF control which is Lipschitz

continous, whereas using both improves performace. For
simplicity, we can also set vref (t) = v∗i (t) and uref (t) =
u∗i (t) instead of (16) and (19) ((17) and (20)).

D. Constraint Violation Due to Noise

In this section, we consider the noise model (8). In the
presence of noise in the dynamics, constraints 1, 2, 3 may be
temporarily violated, which prevents the CBF method from
satisfying the forward invariance property [2], [15] if any of
these constraints is initially violated. Therefore, we need to
find a way to ensure that Constraints 1, 2, 3 are satisfied
again in finite time.

Suppose we have a constraint hi(xi(t)) ≥ 0 for vehicle
i ∈ S(t), and this constraint is violated at time t1 due to
the noise, i.e., we have hi(xi(t1)) < 0. We need to make
sure that hi(xi(t)) is strictly increasing after time t1, i.e.,
ḣi(xi(t)) ≥ c, where c > 0. Using Lie derivatives, we
evaluate the change in hi(xi(t)) along the flow defined by
the system state vector. Then, any control ui(t) must satisfy

Lfhi(xi(t)) + Lghi(xi(t))ui(t) ≥ c (22)

where c should be large enough so that hi(xi(t)) is strictly
increasing even if the system is subject to the worst possible
noise case. For this reason, in what follows we assume that
the random processes wi,1(t), wi,2(t) in (8) are characterized
by probability density functions with finite support, hence
there exist upper and lower bounds we can use in determining
an appropriate value for c.

Note that several constraints may be violated at the same
time. Starting from t1, we apply the constraint (22) to the
CBF optimizer instead of the CBF constraint, and hi(xi(t))
will be positive again in finite time since it is strictly
increasing. When hi(xi(t)) becomes positive again at t2,
we can once again apply the CBF constraint.

IV. SIMULATION RESULTS

All controllers in this section have been implemented
using MATLAB and we have used the Vissim microscopic
multi-model traffic flow simulation tool as a baseline for
the purpose of making comparisons between our controllers
and human-driven vehicles adopting standard car-following
models used in Vissim. We used QUADPROG for solving QPs
of the form (21) or (15) and ODE45 to integrate the vehicle
dynamics.

Referring to Fig. 1, CAVs arrive according to Poisson
processes with arrival rates that we allow to vary in our sim-
ulation examples. The initial speed vi(t

0
i ) is also randomly

generated with uniform distribution in [15m/s, 20m/s] at
the origins O and O′, respectively. The parameters for (21)
or (15) and (8) are: L = 400m,ϕ = 1.8s, δ = 0m,umax =
3.924m/s2, umin = −3.924m/s2, vmax = 30m/s, vmin =
0m/s, β = 1, ε = 10,∆t = 0.1s, c = 1, and we consider
uniformly distributed noise processes (in [-2, 2] for wi,1(t)
and in [-0.2, 0.2] for wi,2(t)) for all simulations.

1. OCBF implementation example. First, we provide a
simple example of the OCBF controller implementation for a
single vehicle which considers (21) as the objective function.
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TABLE I
OBJECTIVE FUNCTION COMPARISON WITHOUT NOISE

Items OC OCBF
Track (16) (17) (17) (16), (19)
σ 4 40

time (s) 15.01 15.07 15.01 15.01 15.01
1
2
u2i (t) 4.4400 4.4129 4.6962 4.6674 4.4403

objective 33.3356 33.4357 33.5252 33.5039 33.3358

The initial parameters are t0i = 0s, v0i = 20m/s, α = 0.26.
If we only apply (16) or (17), set uref (t) = 0 and assume no
noise, then we obtain the control profiles shown in Fig. 2(a).
The speed reference form (17) tends to achieve a closer track
of the OC control (black curve) compared to the form (16)
at the expense of larger over-shot; as a result, performnace
is worse as shown in Table I (values in red are the best).

If we apply both (16) and (19) without noise, we obtain
the control profiles shown in Fig. 2(b) where the OCBF
controller’s performance is virtually indistinguishable from
that of the OC control, as shown in Table I.

With noise added (based on uniform distribution in [-2, 2]
for wi,1(t) and in [-0.2, 0.2] for wi,2(t)), we show the control
profiles under different noise levels in Fig. 2(c) with (16)
and (19); and in Fig. 2(d) with (17) and (20). Constraints 1-3
may be temporarily violated but will be forced to be satisfied
again in finite time through constraint (22). The speed and
control tracking forms (16) and (19) perform better than (17)
and (20) as noise increases.

2. Comparison of OC control from [18], CBF control
from [16], and OCBF control in this paper. Consider the
merging problem with the simple objective function (7) for
which we can easily get unconstrained optimal solutions.
Then, we employ the CBF method and the OCBF technique
(with (16) and (19)) introduced in Sec. III-C. Simulation
results under four different trade-off parameters are shown
in Table II. We can see that the OCBF method achieves
comparable results to OC, even in the presence of noise.

The computation time in MATLAB with the OCBF
method for each i at each step is less than 0.01s (Intel(R)
Core(TM) i7-8700 CPU @ 3.2GHz 3.2GHz), while the OC
method takes between 1s and 30s for each CAV, depending
on whether the constraints are active or not.

We also show in Fig. 3(a) how the travel time and energy
consumption vary as the weight factor α in (6) changes,
and similarly for the objective function in Fig. 3(b). The
significance of Fig. 3(b) is to show how well the OCBF can
match the optimal performance obtained through OC.

3. Comparison of CBF control from [16], CBF control
with objective (12) in this paper, and human-driven
vehicles through Vissim. We now consider the objective
function (12) which is too complex to allow the derivation
of an OC solution. Thus, we transform (12) into (15) and
select a value β = 0.2 for the weight β in (15) through trial
and error to best match the performance in Vissim. We vary
the relative traffic arrival rates of the main and merging lane
and show our results in Tables III, IV, V.

TABLE II
COMPARISON OF OC, CBF AND OCBF (WITH NOISE)

Method α Noise Ave. time(s) Ave. 1
2
u2i (t) Ave. obj.

CBF N/A no 14.6978 26.9178 N/A
OC

0.01
no 25.4291 0.1725 2.1288

OCBF no 25.6879 1.0582 3.0256
yes 25.7494 2.2373 4.1976

OC
0.25

no 17.0472 4.9069 36.4909

OCBF no 17.1176 5.5569 37.1139
yes 17.1396 6.8959 38.1605

OC
0.40

no 15.1713 10.6508 53.1120

OCBF no 15.2286 11.3629 53.7157
yes 15.2527 12.7671 54.6325

OC
0.60

no 13.1035 24.4079 70.2922

OCBF no 13.1560 25.2468 70.8720
yes 13.1692 26.6534 71.4938

TABLE III
MAIN LANE ARRIVAL RATE : MERGING LANE ARRIVAL RATE = 1:1

Items CBF-(7) [16] CBF-(12) Vissim
Ave. time(s) 14.6978 18.1549 25.0813
Main time(s) 14.7000 18.1717 17.9935
Merg. time(s) 14.6956 18.1378 32.3267
Ave. fuel(mL) 57.9532 30.9813 36.9954
Main fuel(mL) 57.7028 30.8856 42.6925
Merg. fuel(mL) 58.2092 31.0791 31.1717

In Tables III and IV, note that both CBF methods out-
perform human-driven vehicles modeled though Vissim. We
also observe that the CBF method developed in this paper
using (12) is vastly superior to that of [16] in the energy
component with little loss in travel time performance. We
also note that without any control (as in Vissim), the main
lane vehicles have priority over the merging lane and the
merging lane vehicles may even stop before the merging
point. Thus, there is heavy congestion in the merging lane
when the ratio between the main lane and Merging lane
arrival rates is 1:3.

We observe in Table V that the energy consumption
vehicles in Vissim is significantly lower compared to the
CBF methods. This is due to the fact that the merging lane
vehicles frequently stop before the merging point M , thus
having low speeds when passing over M . In order to achieve
a fair comparison, we consider a longer time horizon over
which we measure fuel consumption and travel time. This
is accomplished by extending the trip of each vehicle for an
additional length L beyond the merging point M , as shown
in Table VI. As expected, the energy performance under CBF
control is now significantly better (by about 37%) than that
of human-driven vehicles.

TABLE IV
MAIN LANE ARRIVAL RATE : MERGING LANE ARRIVAL RATE = 3:1

Items CBF-(7) [16] CBF-(12) Vissim
Ave. time(s) 14.6578 18.1189 23.9300
Main time(s) 14.6794 18.1413 18.3476
Merg. time(s) 14.6074 18.0667 36.9556
Ave. fuel(mL) 60.2624 31.9754 39.8587
Main fuel(mL) 61.0934 32.7556 42.8554
Merg. fuel(mL) 58.3235 30.1549 32.8666
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(a) The control profiles with only
speed tracking (16) or (17).

(b) The controls with speed track-
ing (16) and control tracking (19).

(c) The controls with both (16) and
(19) under different noise levels.

(d) The controls with (17) and (20),
σ=40 under different noise levels.

Fig. 2. OCBF implementation examples under different tracking equations and noise levels.

(a) Travel time and energy con-
sumption as the factor α changes.

(b) Objective function as the
weight factor α changes.

Fig. 3. Performance metrics variation as the weight factor α changes.

TABLE V
MAIN LANE ARRIVAL RATE : MERGING LANE ARRIVAL RATE = 1:3

Items CBF-(7) [16] CBF-(12) Vissim
Ave. time(s) 14.6000 18.0093 29.2035
Main time(s) 14.7133 18.1133 17.8667
Merg. time(s) 14.5761 17.9873 31.5986
Ave. fuel(mL) 61.1607 33.4848 30.5212
Main fuel(mL) 57.3805 30.9263 46.5004
Merg. fuel(mL) 61.9593 34.0253 27.1454

V. CONCLUSIONS

We have shown how to combine the OC and the CBF
method to solve the merging problem for CAVs in order to
deal with cases where the OC solution becomes computation-
ally costly, as well as to handle the presence of noise in the
vehicle dynamics by exploiting the ability of control barrier
functions to add some robustness to an OC controller. In
addition, when considering more complex objective functions
for which analytical optimal control solutions are unavail-
able, we have adapted the CBF method to such objectives.
Remaining challenges include the proper selection of the
weight factor that trades off time and energy and the use
of time-varying steps in implementing the OCBF method.

TABLE VI
RATE = 1:3, ADDING A LANE OF LENGTH L AFTER THE MERGING POINT.

Items CBF-(7) [16] CBF-(12) Vissim
Ave. time(s) 28.7975 36.3076 50.9987
Main time(s) 28.9857 36.3786 38.8643
Merg. time(s) 28.7569 36.2923 53.6123
Ave. fuel(mL) 88.2784 51.6414 81.6633
Main fuel(mL) 86.6246 48.7578 77.8110
Merg. fuel(mL) 88.6347 52.2625 82.4930
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