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Learning a Tracking Controller for Rolling µbots
Logan E. Beaver , Member, IEEE, Max Sokolich , Suhail Alsalehi , Ron Weiss , Sambeeta Das ,

and Calin Belta , Fellow, IEEE

Abstract—Micron-scale robots (µbots) have recently shown
great promise for emerging medical applications. Accurate con-
trol of µbots, while critical to their successful deployment, is
challenging. In this work, we consider the problem of tracking a
reference trajectory using a µbot in the presence of disturbances
and uncertainty. The disturbances primarily come from Brownian
motion and other environmental phenomena, while the uncertainty
originates from errors in the model parameters. We model theµbot
as an uncertain unicycle that is controlled by a global magnetic
field. To compensate for disturbances and uncertainties, we develop
a nonlinear mismatch controller. We define the model mismatch
error as the difference between our model’s predicted velocity and
the actual velocity of the µbot. We employ a Gaussian Process
to learn the model mismatch error as a function of the applied
control input. Then we use a least-squares minimization to select
a control action that minimizes the difference between the actual
velocity of the µbot and a reference velocity. We demonstrate the
online performance of our joint learning and control algorithm
in simulation, where our approach accurately learns the model
mismatch and improves tracking performance. We also validate
our approach in an experiment and show that certain error metrics
are reduced by up to 40%.

Index Terms—Micro/nano robots, machine learning for robot
control, optimization and optimal control.

I. INTRODUCTION

INTEREST in micron-scale robots (μbots) has grown expo-
nentially in recent decades [1]. Medical applications have

been of particular interest, including drug delivery [2], [3],
biopsy [4], microsurgery [5], and cellular manipulation [6], [7],
[8], [9]. Despite these advances, there are numerous challenges
associated with the control of μbots. The extremely small scale
of μbots incentivizes novel actuation techniques, such as elec-
trophoretic [10], optical [11], magnetic [12], thermal [13], or by
attachment to swimming microorganisms [14].

Our μbot is controlled by a rotating 3D magnetic field. The
field induces a rotating moment on the μbot, which causes it
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to roll along the substrate surface during experiments. As a
consequence, this method uses significantly less energy than
other actuation methods, e.g., translating particles using strong
magnetic gradients. A similar control technique has been pre-
viously used to control the micron scale “rod-bot” [15] for
micron-scale manipulation. The μbot we control is spherical,
non-toxic to living cells, and can be embedded within cells
without damaging them [16]. This makes it an ideal candidate for
emerging medical applications involving cellular manipulation.
However, the small size of the μbot also implies that Brownian
motion plays a significant role in its dynamics (see [17], [18]),
and modeling error makes theμbot difficult to control accurately.
The readers are referred to [19] for further details on different
actuation techniques and motion control strategies for robots at
the micron scale.

In this article, we develop a joint learning and control ap-
proach to improve the tracking capabilities of rolling μbots. A
related vision-based control system to manipulate rolling μbots
was presented in [20], where the authors used closed-loop visual
feedback to navigate through an environment with impurities
and obstacles. Similarly, [20] used a combination of PID control
with a Kalman filter to guide rolling magnetic microrobots. It is
important to note that there are few microrobotic control algo-
rithms that use learning techniques, especially at scales relevant
to this paper. [21] used deep reinforcement learning to enable a
model microswimmer to self-learn effective locomotory gaits for
translation, rotation and combined motions. [22] used analytical
and reinforcement learning control strategies for path planning
to a target by multiple swimmers using a uniform magnetic field.
Also, [23] combined real-world artificial active particles with
machine learning algorithms to explore their adaptive behavior
in a noisy environment with reinforcement learning. In contrast,
we propose an open-loop strategy that takes the desired velocity
as an input and yields a corrected control signal that minimizes
the difference between the desired and actual velocities of the
μbot. As a consequence, our approach is straightforward to
include as an intermediate step for receding horizon control
and other closed-loop feedback strategies. Compared to related
learning-based approaches, e.g., controlling swimming micron-
scale robots [24], our approach is model-based and explicitly
embeds the learning within the controller.

Inspired by [25], in this work we derive a controller to min-
imize the nonlinear mismatch error, that is, the error between
our nonlinear μbot model and the actual dynamics. We achieve
this in three steps. First, we invert an empirically derived μbot
model to convert a desired velocity into a desired control ac-
tion. Then, we use the learned nonlinear mismatch error and
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Fig. 1. Design schematics and image of the 3D Helmholtz-based System.

least-squares optimization to generate a corrected control sig-
nal. The corrected control signal exploits the learned error to
minimize the difference between the desired and actual velocity
of the μbot. In comparison, [25] updates the desired velocity of
the system before inverting the dynamics.

The contributions of this article are as follows:
� we extend the inverse nonlinear mismatch approach of [25]

from a 1D regression problem with linear dynamics to a
2D trajectory tracking problem;

� we derive an explicit functional form of the μbot’s input-
output velocity error to demonstrate that model parameter
fitting is insufficient for accurate control—this also moti-
vates the development of nonlinear control techniques;

� we derive an novel control strategy to correct the nonlinear
model mismatch error by explicitly embedding a Gaussian
Process regression model within a least-squares optimiza-
tion problem; and

� we demonstrate improvement in the μbot’s tracking capa-
bility in simulation and experiment, and we show that our
online learning approach is real-time implementable.

The remainder of this article is organized as follows: We
present our experimental setup in Section II and formulate
the tracking problem in Section III. We present our learning
approach in Section IV. Simulation and experimental results are
included in Section V, and we draw conclusions and discuss
future work in Section VI.

II. EXPERIMENTAL SETUP

In order to generate the magnetic fields necessary to actuate
the rolling μbots, 6 Helmholtz coils are designed and arranged
in parallel pairs as shown in Fig. 1. The coils are mounted
on a Zeiss Axiovert 100 inverted microscope. To power the
coils, we use an Arduino Mega micro-controller connected to a
Jetson Xavier NX single board computer similar to a Raspberry
Pi. The Jetson Xavier NX is capable of running a full Linux
distribution with the help of a keyboard, mouse and monitor.
A custom tracking and control program is written in python to
read incoming images from a FLIR BFS-U3-28S5M-C USB
3.1 Blackfly S Monochrome Camera. The continuous stream of
images is analyzed in Python’s OpenCV library, which is used
to extract position and velocity data for detected microrobots.

Fig. 2. Schematic illustrating the notation. The solid axes X , Y , Z define the
Cartesian coordinate system. The motion of the μbot is the in the (X,Y )-plane.
The fixed attitude angle γ is out of the plane, while the heading angle α is in
plane. The frequency f determines the μbot’s forward speed along v, which is
in the (X,Y )-plane.

Action commands in the form of a heading angle α to steer
the μbot, a constant attitude angle γ, and a frequency f to set the
speed at which the magnetic field rotates are sent to the Arduino
over a serial communication protocol. These action/input com-
mands are converted to a 3D rotating magnetic field. Because
current is proportional to the magnetic field generated from elec-
tromagnets, the magnetic field B = [Bx, By, Bz]

T is mapped
to the heading, attitude, and frequency signals via

B =

⎡
⎢⎣ cos(γ) cos(α) cos(2πft) + sin(α) sin(2πft)

− cos(γ) sin(α) cos(2πft) + cos(α) sin(2πft)

sin(γ) cos(2πft)

⎤
⎥⎦ ,

(1)

where γ ∈ [−π, π] is a fixed attitude angle, α ∈ [−π, π] is the
heading angle, and f ∈ R is the rolling frequency. The angles
and coordinate system are depicted in Fig. 2. Note that since B
is 3 Dimensional, half of the required current is sent to each pair
of parallel electromagnets to achieve the desired magnetic field
strength.

The μbots are constructed by plasma cleaning a plain glass
slide on high for 5 minutes, wherein 24 µm paramagnetic, flu-
orescent microspheres (Spherotech FCM-10052-2) mixed with
ethanol are drop casted and left to dry. The microspheres are
coated with a 100 nm thick layer of Nickel in a dual electron
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beam deposition chamber, which increases the μbot’s magnetic
moment. Due to the inherent surface properties of the μbot
and the substrate surface, there are often very large attractive
forces that result in the μbot sticking to the surface, hindering
its motion. This is highly unpredictable and quite common
despite adequate cleaning of the microscope slide surface. As a
result, two additions were made to the experimental procedure
to help reduce the likelihood of sticking. Firstly, the plasma
cleaned glass slide was additionally incubated in a PFOTS
(1H,1H,2H,2H-perfluorooctyltrichlorosilane) vapor at 85 °C for
30 minutes. This results in a hydrophobic surface that allows
the μbot to more easily roll across the surface. Secondly, instead
of suspending the μbot’s in DI water, they are suspended in a
0.1% solution of Sodium Dodecyl Sulfate, which is a surfactant.
Although this reduces the rolling speed of the microrobot due
to the increased viscosity, it significantly reduces the chances of
the microrobot sticking.

III. PROBLEM FORMULATION AND APPROACH

The μbot is a roughly spherical magnetic particle that we
control using a 3D magnetic field. We control the μbot by
continuously rotating the magnetic field using (1), which induces
a rotational moment in the μbot and causes it to roll along the
substrate surface. Varying the frequency f affects the forward
speed of the μbot, while varying the heading angle α affects
its heading direction; these are depicted in Fig. 2. Based on the
rolling motion of the μbot, we model it as a unicycle subject to
a generalized disturbance term [26]:

ṗ = a0f

[
cos(α)

sin(α)

]
+D, (2)

where p ∈ R2 is the position in a given reference frame, a0 ∈
R>0 is an empirically determined effective radius of the μbot,
and f, α are the μbot’s rotation frequency and heading angle,
respectively. Finally,D ∈ R2 is a disturbance term that captures
Brownian motion and other micron-scale disturbances. Note that
we subsequently justify that 1) the control actions are identical
to the heading angle and rolling frequency of (1), and 2) the
frequency f can be fixed in practice, and thus we consider only
a single control input α.

Our objective is to follow a reference trajectory. Let v = ṗ
denote the velocity of the μbot (see Fig. 2). Given a desired
velocity signal vd(t), we seek to find the optimal control inputα
such that the difference between ṗ(α(t)) andvd(t) is minimized.
This control achieves our objective given that the μbot starts on
the reference trajectory. This approach is useful for high-level
planners, e.g., those using RRT* and MPC, as they can generate
trajectories using only the kinematic model ṗ ≈ vd. This decou-
ples trajectory tracking from high-level motion planning, which
is an area of ongoing research. To achieve this, we present our
working assumptions for our tracking controller next.

Assumption 1: The environmental disturbance D and any
error in our model of the true dynamics (2) are isotropic, i.e.,
they do not depend on the μbot’s position p.

Assumption 2: There error in aligning the μbot with the
magnetic field is negligible, i.e., α and f in (1) and (2) are
identical.

Assumptions 1 and 2 simplify the learning process and are
reasonable for the laboratory environment. The disturbance
affecting the μbot is primarily Brownian motion, which acts
uniformly at random to disturb the velocity. Assumption 1 could
be relaxed by having the μbots infer hydrodynamic disturbances
caused by heat, density, and chemical concentration differences,
e.g., using an approach similar to [27]. In previous work, we have
also found that the alignment of μbots to the global magnetic
field is nearly instantaneous (see [28]), which justifies Assump-
tion 2.

Assumption 3: The μbot is controlled to roll at a fixed rate,
i.e., f(t) is a known constant selected a priori.

Assumption 3 does not affect the derivation of our controller,
as we only employ it when training our machine learning algo-
rithm and solving the least-squares optimization. Relaxing this
assumption increases the amount of training data and learning
time, but not prohibitively so. Furthermore, operatingμbots with
a constant rolling frequency is common practice [16].

Our technical approach is as follows: First, we parameter-
ize the μbot’s dynamics with an approximate model, and we
derive the functional form of the model error. We show that
the domain of the model error function is a subset of the state
space, which we use as the features (inputs) for a machine
learning algorithm. After learning the model error, we employ
least-squares optimization to minimize the difference between
the predicted and actual velocity of the μbot. Note that we do
not minimize the predicted velocity error directly. Instead, we
adjust the control signal sent to the μbot to compensate for the
model error indirectly.

IV. NONLINEAR MISMATCH CONTROLLER

The unicycle model satisfies the property of differential flat-
ness with the output variablep, that is, we can change the coordi-
nates of our unicycle dynamics (2) to only consider the variable
p and its derivative ṗ := v (see [29]). Furthermore, while the
frequency f is fixed under Assumption 3, it is straightforward
to relax this assumption for our analysis. In fact, allowing a
variable frequency f only introduces computational complexity
while training the machine learning model and solving the
least-squares optimization problem. The mapping for our rolling
dynamics is

α = arctan

(
vy −Dy

vx −Dx

)
,

f =
||v −D||

a0
, (3)

whereD = [Dx Dy] and v = [vx vy]. In reality we do not know
the actual value of a0, nor do we know the stochastic disturbance
D. Thus, we denote our approximate model parameters using ·̂.
In particular, â0 is a constant scalar that estimates a0 and D̂ is
a constant vector that estimates the disturbance D. With these
estimates, it is possible to convert a desired velocity into a control
signal using (3), i.e.,

αd = arctan

(
vdy − D̂y

vdx − D̂x

)
,
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Fig. 3. Control block diagram showing how our proposed system (yellow box) transforms the desired velocity signal (vd) into a heading angle (α∗) such that
the difference between vd and v is minimized.

fd =
||vd − D̂||

â0
. (4)

This enables us to convert the desired velocity vd, which is
defined on a Cartesian basis, into control actions for the μbot.
However, due to the inherent inaccuracies of our model, naïvely
applying the control inputαd leads to tracking error. Substituting
the control signals generated by the approximate model (4) into
the dynamics (2) yields the closed-loop velocity of the μbot,

v =
a0
â0

vd +D − a0
â0

D̂. (5)

Equivalently, (5) shows the final μbot velocity after feedback
linearizing with an approximate model. Note that this contains
the nonlinear product of a0

â0
and D̂. This explains why a model

parameter estimation alone is insufficient to achieve a desired
trajectory, as the error in our model parameters is amplified by
this nonlinearity.

To enhance our ability to track the desired trajectory beyond
parameter estimation, we follow the approach outlined by [25]
and explicitly define a velocity error ve,

ve := v − vd, (6)

which, using (5), we can write in closed form as

ve = vd

(
a0
â0

− 1

)
+D − ao

âo
D̂. (7)

Note that (4) enables us to freely convert between vd andαd, fd.
Thus, the right hand side of (7) is a function of αd, fd, the
domain of D, and the domain of D̂. This implies that, under
Assumptions 1–2, we can completely capture the behavior of
the velocity error as some function ve using machine learning
with α and f as the only features.

Note that under Assumption 3, we can also neglect the de-
pendence of ve on f ; this is not a technical limitation, and can
easily be relaxed in applications where f is not constant. Next,
we approximate ve using Gaussian Process (GP) regression. We
train the GP online using experimental data, where the Cartesian
axes of ve are each captured by a GP. In particular, we use (6) to
generate training data by applying a known sequence of control
inputs; we discuss this process further in Section IV-B.

A GP is completely defined by its mean μ(α) and kernel
(or covariance) K(α, α′) functions for two features α, α′. The
prior of the mean is generally zero, while the kernel describes
a statistical distribution over a function space. For accurate re-
gression, the kernel should be a basis for the underlying function
ve(α). After learning the velocity error, the GP takes the heading

angle α as an input and produces a Gaussian distribution over
each component of ve. The mean of this distribution predicts
the expected value of ve and the standard deviation predicts the
uncertainty in the velocity. Compensating for the nonlinearity of
ve is the basis for our nonlinear mismatch controller, which we
present next. A control block diagram of our control approach
is shown in Fig. 3.

A. Optimization-Based Controller

To construct our optimization-based controller, we start by
replacing the desired velocity vd in our error dynamics (6) with
our model. This yields the actual velocity of the μbot for any
given heading angle α in the form:

â0 f

[
cos(α)

sin(α)

]
+ D̂ + ve(α) = v. (8)

Next, we replace the unknown velocity error ve with the mean
prediction from the GP. This assumes that the GP has sufficiently
learned the velocity error function ve, which yields

â0 f

[
cos(α)

sin(α)

]
+ D̂ + µ(α) = v(α), (9)

where µ is the GP’s estimate for each component of the velocity
error. To minimize the velocity error of our μbot, we perform a
least squares minimization of (9) from the desired velocity, i.e.,

min
α

||v(α)− vd||2. (10)

Applying Assumptions 1–3 and expanding (10) yields a one-
dimensional least-squares cost function

J(α) =
(
â0f cos(α) + μx(α) + D̂x − vdx

)2
+
(
â0f sin(α) + μy(α) + D̂y − vdy

)2
. (11)

Expanding the cost function and applying the Pythagorean iden-
tity yields the following least-squares optimization problem

min
α∈[−π,π]

(â0f)
2 + ||µ(α) + D̂ − vd||2

+ 2â0f
(
µ(α) + D̂ − vd

)
·
[
cos(α)

sin(α)

]
, (12)

which is a differentiable scalar optimization problem over a
compact set.
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B. Online Learning

We train the GP during an initial learning phase, where the
μbot is given a sequence of control inputs, either from a human
operator or open-loop control sequence. The learning phase
occurs in the same environment and with the same robots as
the experiment; thus the training and testing environments are
consistent. We collect position and control action data for the
μbot at discrete time steps tk; we denote the position data by
P = {p(tk)} and action data as X = {α(tk)}.

We use these data to numerically derive the inputs and outputs
of the Gaussian Process model of (7), i.e., the control action and
the velocity error, respectively. We calculate the actual velocity
v(tk) by taking a numerical derivative of P and passing the
result through a low-pass filter; this yields the actual velocity of
the μbot at each step, which we store in the set V = {v(tk)}.

Once the data is collected, we estimate the model parameters
and desired velocity as follows. First, we estimateD by applying
a control input of f(t) = α(t) = 0, which yields

ṗ = D. (13)

Taking the expectation of both sides yields the mean disturbance

1

|V|
∑

v(tk)∈V
||v(tk)|| = E [D] = D̂, (14)

where | · | is set cardinality. Note that our estimate D̂ is a constant
parameter that comes from a linear regression; the stochasticity
of D is captured by the Gaussian process that approximates (7).

Next, we determine â0 using data from an open loop control
sequence; taking the expectation of (2) and squaring both sides
yields

E
[
||v − D̂||

]2
= a20f

2. (15)

Substituting the expectation of v with the experimental data,
re-arranging, and taking the square root of both sides yields the
best statistical estimate for â0:

â0 =
1

|V|
∑

v(tk)∈V

||v(tk)− D̂||
f

. (16)

Finally, the resulting set of velocity errors is

Y =
{
ve(tk) : ve = v(tk)− vd(tk)

}
, (17)

where vd(tk) is the desired velocity of the μbot at each time
tk. We use (17) in conjunction with our empirical model (3)
to generate the velocity error and control action at each time
step. With this data, we compute a posterior distribution on the
mean and standard deviation of the GP to determine the expected
velocity error and its uncertainty for each control input.

V. EXPERIMENTAL RESULTS

We validated our learning approach in silico and in situ1; we
present our simulation results in Subsection V-A and experimen-
tal findings in Subsection V-B. In both cases, we first perform

1Videos of the experiments and supplemental material are available online:
https://sites.google.com/udel.edu/l4ub

an online learning step, where we apply a pre-computed control
input to generate training data. Then, to validate our learning
approach, we apply a pre-defined sequence of control actions
in open-loop with and without the Nonlinear Mismatch module
(Fig. 3).

Note that we do training and testing in the same environment,
thus we do not consider issues that may arise from policy
transfer or environmental inconsistency. This procedure yields
the corrected and baseline cases, respectively, which we use to
explicitly quantify the impact of our approach.

We implemented our GP approach using the Scikit-Learn
toolbox (see [30]) for Python3, which provides an API to easily
select a large number of kernels and train the GP. Scikit-learn
also automatically optimizes the kernel hyperparameters during
training, which provided insights for kernel selection. In particu-
lar, some hyperparameters for the rational quadratic, Matern, and
periodic kernels grew arbitrarily small during training, which
implies that these kernels include extraneous dynamics that do
not describe the true behavior of the rollingμbot’s velocity error.
We found that a linear combination of a radial basis function and
white noise in the form

K(α, α′) = exp
||α− α′||2

2σ
+ η (18)

yielded a kernel that adequately captured the velocity error of the
rollingμbot. In the equation above, σ is a length hyperparameter
and η is drawn from a normal distribution where the mean is zero
and the variance is another hyperparameter.

A. In Silico Experiment

We developed a μbot simulator as an OpenAI Gym2 environ-
ment in Python3. We implemented two simulation modes using a
‘model-mismatch’ flag, which disturbs the model parameters and
adds stochastic zero-mean noise to mimic a physical experiment.
Omitting this flag uses the exact model parameters with no noise
to generate the desired system trajectory. We implemented the
learning approach of Section IV as follows. First, we applied
zero input over 100 time steps (3 seconds) with the ‘model-
mismatch’ flag to estimate the mean disturbance using (14).
Next, we generated a sequence of control inputs that swept the
entire control domain α ∈ [−π, π] three times over 1800 time
steps (60 seconds) with the ‘model-mismatch’ flag, which pro-
duced our training data. In training, we estimated â0 and updated
the GPs using (16) and (17), respectively. Finally, to validate
our approach, we performed three experiments in silico; 1) we
generated the desired trajectory without the ‘model-mismatch’
flag, 2) we generated the baseline trajectory by repeating the
experiment with the ‘model-mismatch’ flag enabled, and 3) we
updated the reference control inputs using (12) to generate the
corrected trajectory with the ‘model mismatch’ flag.

Fig. 4 shows the resulting desired, baseline, and corrected
trajectories overlaid for 100 trials with the same initial state.
While the learning component significantly improves the ve-
locity tracking, it is unable to completely compensate for the

2For more information on the Gym environment see: https://github.com/
openai/gym
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Fig. 4. Desired, (blue, dashed), corrected (green), and baseline (orange) tra-
jectories from 100 different trials of the in silico experiment.

Fig. 5. GP’s prediction of the x-axis velocity errors at each time step; the
orange band corresponds to one standard deviation (65%), and the blue band
corresponds to two standard deviations (95%) of uncertainty. The black line is
the actual velocity error, and the red line is the neural network approximation.

Fig. 6. GP’s prediction of the y-axis velocity errors at each time step; orange
band corresponds to one standard deviation (65%), and the blue band corre-
sponds to two standard deviations (95%) of uncertainty. The black line is the
actual velocity error, and the red line is the neural network approximation.

model mismatch–even in an environment with no noise. The
velocity error estimate for one trial is presented in Figs. 5 and 6,
which demonstrates that the GP has captured a reasonably good
estimate of the velocity error at each time step. This implies that
the nonlinear mismatch approach is unable to achieve perfect
tracking for the system, which is likely related to the reachability
of the system’s dynamics (9). This stems from correcting the x
and y components of the velocity error while only controlling
α.

As a comparison with existing methods, we also trained an
ensemble of neural networks (NNs) to learn the μbot model.

Fig. 7. Comparison of the baseline (orange), corrected (green), and desired
(blue, dashed) position trajectories from the in situ experiment.

Fig. 8. Cumulative drift of the μbot in the x and y directions for the in
situ experiment. The baseline has a value of 0, and positive numbers are an
improvement in performance.

Using the same data as the GP training, we trained 5 NNs that
had one hidden layer with either 10, 20, 50, 75 or 100 nodes.
The NNs took the control actions as an input and predicted the
velocity of the μbot; each of the networks was given randomly
initialized weights with ReLU activation functions. We found
the network with 75 nodes in the hidden layer had the best
testing performance, and the error in model prediction is shown
in Figs. 5 and 6. While the NN is able to capture the trends in the
velocity error, the model prediction is significantly worse than
the Gaussian process–and the NN does not produce confidence
intervals to capture the stochasticity of the system. This result
is intuitive, as the GP learns a single model mismatch term,
whereas the neural network models the full μbot dynamics.
While it may be possible to increase NN performance with ad-
ditional data and a larger network architecture, such an analysis
is beyond the scope of this article.

B. In Situ Experiment

We repeated the same procedure from Section V-A using
24umμbots over 300 time steps (10 seconds) at the experimental
facility at the University of Delaware as described in Section II.
The resulting desired, baseline, and corrected trajectories are
presented in Fig. 7, and the drift error for the baseline and
corrected cases is shown in Fig. 8. Photos of an experiment
with the trajectories overlaid are presented in Fig. 9.
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Fig. 9. Photographs of a separate set of baseline (top) and corrected (bottom) experiments, taken approximately 8 seconds apart. The μbot history is overlaid.

TABLE I
ERRORS FOR THE IN SITU μBOT EXPERIMENT; THE MEDIAN USES THE

ABSOLUTE VALUE OF THE ERROR

Fig. 7 shows significant improvement in the μbot’s ability
to track the open-loop trajectory. We translated the normalized
and corrected position data to the origin to compare it with
the desired trajectory. This shows a significant improvement
in the μbot’s position trajectory tracking, which comes from a
combination of our improved tracking controller and random
disturbances. In other words, integrating the μbot’s velocity
after applying our corrected control signal yields less error than
the uncorrected case. This is shown explicitly in Fig. 8, which
depicts the μbot’s drift throughout the experiment.

To calculate the μbot’s drift, we subtracted the desired and
actual velocity along each axis to calculate the velocity error.
Next, we performed a cumulative trapezoidal integration on the
norm of the velocity error. This yields the worst-case scenario
for how far the μbot could drift from the reference trajectory.
As a result, drift was reduced by at least 6 pixels (3.7 microns)
along each axis for the majority of the experiment.

The median velocity error along each axis is presented in
Table I, along with the error in the μbot’s final position for
each case. These results show that despite the poor tracking in
the final 3 seconds, our learning controller significantly reduces
the drift of the μbot by matching the desired open-loop control
policy and brings the μbot closer to the desired final position.
Due to the nature of the experimental environment, it is not
uncommon for unexpected disturbances, such as stiction, debris,
and nearby magnetic particles, to disturb the μbot’s trajectory in
a way that our tracking controller cannot compensate for. These

exogenous factors are the source of error in the last 3 seconds
of the corrected experiment.

VI. CONCLUSION

We developed a nonlinear mismatch controller to improve the
performance of a tracking controller in 2D. We motivated the
use of nonlinear mismatch over a parameter estimation scheme,
and we proposed a least-squares based optimization problem to
minimize the tracking error. Finally, we demonstrated in simu-
lation and experiments that our approach significantly improves
the tracking performance of rolling μbots.

Future work includes relaxing Assumption 3 and including
f as parameter in the model mismatch. Deriving guarantees on
the resulting velocity error using fixed-point analysis is another
interesting research direction; employing the GP’s uncertainty
estimate as a measure of robustness in a high-level planner may
also yield useful insights. Embedding our low-level controller
inside of an MPC path planner to avoid undesired collisions
with cells and counteract Brownian diffusion in-situ is another
critical next step for this work. Finally, expanding our approach
to control multipleμbots simultaneously would advance the state
of the art, and bring us one step closer to solving fundamental
challenges in emerging medical applications.

REFERENCES

[1] T. Honda, K. I. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,” IEEE Trans. Magn., vol. 32, no. 5,
pp. 5085–5087, Sep. 1996.

[2] M. Sitti et al., “Biomedical applications of untethered mobile
milli/microrobots,” Proc. IEEE, vol. 103, no. 2, pp. 205–224, Feb. 2015.

[3] J. Troccaz and R. Bogue, “The development of medical microrobots: A
review of progress,” Ind. Robot: An Int. J., vol. 35, no. 4, pp. 294–299,
2008.

[4] C. Bárcena, A. K. Sra, and J. Gao, “Applications of magnetic nanoparticles
in biomedicine,” in Nanoscale Magnetic Materials and Applications.
Boston, MA, USA: Springer, 2009, pp. 591–626.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 23,2024 at 02:45:19 UTC from IEEE Xplore.  Restrictions apply. 



1826 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 2, FEBRUARY 2024

[5] S. Guo and Q. Pan, “Mechanism and control of a novel type microrobot for
biomedical application,” in Proc. IEEE Int. Conf. Robot. Automat., 2007,
pp. 187–192.

[6] M. S. Sakar, E. B. Steager, A. Cowley, V. Kumar, and G. J. Pappas,
“Wireless manipulation of single cells using magnetic microtransporters,”
in Proc. IEEE Int. Conf. Robot. Automat., 2011, pp. 2668–2673.

[7] E. W. H. Jager, O. Inganäs, and I. S. Lundström, “Microrobots for
micrometer-size objects in aqueous media: Potential tools for single-cell
manipulation,” Science, vol. 288, no. 5475, pp. 2335–2338, 2000.

[8] S. Kim et al., “Fabrication and characterization of magnetic microrobots
for three-dimensional cell culture and targeted transportation,” Adv. Mater.,
vol. 25, no. 41, pp. 5863–5868, 2013.

[9] E. B. Steager, M. S. Sakar, C. Magee, M. Kennedy, A. Cowley, and
V. Kumar, “Automated biomanipulation of single cells using mag-
netic microrobots,” Int. J. Robot. Res., vol. 32, no. 3, pp. 346–359,
2013.

[10] H. Kim and M. J. Kim, “Electric field control of bacteria-powered micro-
robots using a static obstacle avoidance algorithm,” IEEE Trans. Robot.,
vol. 32, no. 1, pp. 125–137, Feb. 2016.

[11] D. Palima and J. Glückstad, “Gearing up for optical microrobotics: Micro-
manipulation and actuation of synthetic microstructures by optical forces,”
Laser Photon. Rev., vol. 7, no. 4, pp. 478–494, 2013.

[12] S. Chowdhury, W. Jing, and D. J. Cappelleri, “Towards independent control
of multiple magnetic mobile microrobots,” Micromachines, vol. 7, no. 1,
2016, Art. no. 3.

[13] E. Y. Erdem et al., “Thermally actuated omnidirectional walking micro-
robot,” J. Microelectromech. Syst., vol. 19, no. 3, pp. 433–442, Jun. 2010.

[14] B. Behkam and M. Sitti, Bacteria Integrated Swimming Microrobots
(Lecture Notes in Computer Science Series), vol. 4850. New York, NY,
USA: Springer, 2007.

[15] R. Pieters, H.-W. Tung, S. Charreyron, D. F. Sargent, and B. J. Nelson,
“RodBot: A rolling microrobot for micromanipulation,” in Proc. IEEE Int.
Conf. Robot. Automat., 2015, pp. 4042–4047.

[16] D. Rivas, S. Mallick, M. Sokolich, and S. Das, “Cellular manipulation us-
ing rolling microrobots,” in Proc. IEEE Int. Conf. Manipulation, Automat.
Robot. Small Scales., 2022, pp. 1–6.

[17] S. Das, E. B. Steager, M. A. Hsieh, K. J. Stebe, and V. Kumar, “Experiments
and open-loop control of multiple catalytic microrobots,” J. Micro-Bio
Robot., vol. 14, no. 1/2, pp. 25–34, 2018.

[18] B. M. Vinagre, I. Tejado, and J. E. Traver, “There’s plenty of fractional at
the bottom, I: Brownian motors and swimming microrobots,” Fractional
Calculus Appl. Anal., vol. 19, no. 5, 2016, Art. no. 1282.

[19] T. Xu, J. Yu, X. Yan, H. Choi, and L. Zhang, “Magnetic actuation based
motion control for microrobots: An overview,” Micromachines, vol. 6,
no. 9, pp. 1346–1364, 2015.

[20] X. Tang, Y. Li, X. Liu, D. Liu, Z. Chen, and T. Arai, “Vision-based
automated control of magnetic microrobots,” Micromachines, vol. 13,
no. 2, 2022, Art. no. 337.

[21] Z. Zou, Y. Liu, Y.-N. Young, O. S. Pak, and A. C. Tsang, “Gait switching
and targeted navigation of microswimmers via deep reinforcement learn-
ing,” Commun. Phys., vol. 5, no. 1, 2022, Art. no. 158.

[22] L. Amoudruz and P. Koumoutsakos, “Independent control and path plan-
ning of microswimmers with a uniform magnetic field,” Adv. Intell. Syst.,
vol. 4, no. 3, 2022, Art. no. 2100183.

[23] S. Muiños-Landin, A. Fischer, V. Holubec, and F. Cichos, “Reinforcement
learning with artificial microswimmers,” Sci. Robot., vol. 6, no. 52, 2021,
Art. no. eabd9285.

[24] M. R. Behrens and W. C. Ruder, “Smart magnetic microrobots learn to
swim with deep reinforcement learning,” Adv. Intell. Syst., vol. 4, no. 10,
2022, Art. no. 2200023.

[25] M. Greeff and A. P. Schoellig, “Exploiting differential flatness for robust
learning-based tracking control using Gaussian processes,” IEEE Control
Syst. Lett., vol. 5, no. 4, pp. 1121–1126, Oct. 2021.

[26] L. Yang, Y. Zhang, Q. Wang, K.-F. Chan, and L. Zhang, “Automated
control of magnetic spore-based microrobot using fluorescence imaging
for targeted delivery with cellular resolution,” IEEE Trans. Automat. Sci.
Eng., vol. 17, no. 1, pp. 490–501, Jan. 2020.

[27] D. Chang, W. Wu, C. R. Edwards, and F. Zhang, “Motion tomography:
Mapping flow fields using autonomous underwater vehicles,” Int. J. Robot.
Res., vol. 36, no. 3, pp. 320–336, 2017.

[28] L. E. Beaver, B. Wu, S. Das, and A. A. Malikopoulos, “A first-order
approach to model simultaneous control of multiple microrobots,” in
Proc. IEEE Int. Conf. Manipulation, Automat. Robot. Small Scales, 2022,
pp. 1–7.

[29] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems, 1st ed.
Boca Raton, FL, USA: CRC Press, 2018.

[30] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 23,2024 at 02:45:19 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


