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Abstract— Adaptation refers to the system’s ability to re-
spond transiently to an input signal and subsequently recover
to the initial states. Adaptive robustness, the ability of a
network to achieve adaptation, is subject to the loading effects
arising from modular interconnections, known as retroactivity.
Studying the effects of retroactivity on adaptive robustness
facilitates the employment of retroactivity to improve circuit
performance in synthetic biology. In this paper, we developed
a framework for quantifying adaptive robustness via statistical
model checking and used this framework to investigate the
effects of retroactivity on adaptive robustness. We found that
increasing retroactivity tends to raise adaptive robustness in
networks where the output protein does not perform regulatory
functions, such as incoherent feedforward loops.

I. INTRODUCTION

Transcriptional regulatory networks (TRN) are collections
of gene regulations that are mediated by transcriptional fac-
tors (TF). Variation in TRN contributes to diverse biological
functions inside the cells. Adaptation is a biological function
concerning the temporal dynamics of gene expression. It
consists of a response phase, where the expression level
of a gene responds transiently to an external stimulus,
and a recovery phase, where the expression level adapts
gradually to the initial value (Fig. 1) [1], [2]. Examples
of adaptation include signal transduction [3], [4], [5], [6],
bacteria chemotaxis [7], [8], [9], and homeostasis [10]. It
is well known that TRN with certain topologies such as
incoherent feedforward loops (IFFL) and negative feedback
loops (NFBL) can mediate adaptations robustly. In other
words, even though chemical kinetic rates vary significantly
across a cell population, networks like IFFL are more likely
to execute adaptations than most other networks. Many
studies used the term adaptive robustness to describe the
ability of a network to achieve adaptations regardless of the
parameters [2], [11], [12]. In synthetic biology, investigating
the adaptive robustness of various networks is especially
important, as it is impossible to achieve precise control of
chemical kinetic rates in synthetic TRN due to complex
cellular environments. However, a standard quantitative def-
inition of adaptive robustness has not been formalized.

One aim of synthetic biology is to facilitate and modulate
biological functions via the engineering of synthetic TRN.
Taking advantage of the high adaptive robustness of IFFL,
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researchers successfully constructed synthetic networks that
can form biological patterns [13] or detect toxic chemical
substances [14]. For improving circuit performance, a natural
subsequent step is to investigate the effects of the parameters
of IFFL on adaptations. Synthetic networks like IFFL are
composed of transcriptional components, also known as
modules. In the past, much attention was given to the effects
of the parameters that are inherent in the modules, including
protein production rates and decay rates [2], [11]. However,
behaviors of networks are determined not only by behaviors
of modules but also by the loading effects that arise from
modular interconnections, known as retroactivity [15], [16].
Retroactivity refers to the phenomenon where transmitting
a biological signal from the upstream system to the down-
stream system alters the behavior of the upstream system
[17], [18], [12]. Based on theoretical foundations, the authors
of [18] proved via experiments the existence of retroactivity
in TRN and the feasibility of controlling retroactivity via
plasmid copy numbers. According to [17] and [18], raising
plasmid copy numbers and lowering protein production rates
per plasmid by the same fold can increase the retroactivity
of a system without affecting its steady states. Up till now
retroactivity has been shown to impact biological functions
including ultra-sensitivity [15], input-output characteristics
[19], and response times [18], [20]. No previous work has
yet been done on the effects of retroactivity on adaptive
robustness. Understanding such effects will shed light on
methods to control retroactivity and design synthetic circuits
that can execute adaptations more robustly.

Our paper aims to study how retroactivity affects the
adaptive robustness of different TRN. To facilitate such an
investigation, we provided an explicit quantitative definition
of adaptive robustness using Bounded Linear Temporal Logic
(BLTL) and developed a framework for quantifying adaptive
robustness via statistical model checking (SMC). We chose
BLTL over Linear Temporal Logic because in practice, sys-
tem simulations need to be finite in length [23]. The authors
of [17] developed a systematic approach to constructing
ordinary differential equation (ODE) models that account for
retroactivity for a large class of TRN. Taking the approach
shown in [17], we constructed two systems of ODE for TRN
with and without retroactivity, and compared the robustness
of these systems. We found that higher retroactivity generally
brings stronger effects on adaptive robustness. In networks
like IFFL, where the output protein does not perform reg-
ulatory functions, increasing retroactivity tends to increase
adaptive robustness. Our findings imply that we can improve
circuit performance by using retroactivity in advantageous

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7926-5/$31.00 ©2019 AACC 5396

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:51:17 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Response sensitivity and adaptation errors.

Fig. 2: Examples of three-node TRN. Arrows indicate ac-
tivation, and edges with bars at the ends, inhibition. The
leftmost network is an NFBL, in which the edges traversing
B, A, and C accumulate in a negative regulation. The two
networks on the right are IFFL, in which A directly activates
C and indirectly represses C via B. In a type-IV IFFL, A
represses B. In a type-I IFFL, A activates B.

ways.
The rest of this paper is organized into the following

sections. In Section II, adaptive robustness is defined, and the
problem we consider is formulated in a mathematical context.
In Section III, ODE models with and without retroactivity are
introduced. In Section IV, we demonstrate the application of
SMC to our problem. A summary of our results follows in
Section V.

II. PROBLEM FORMULATION

A. TRN and Adaptation

A TRN consisting of N genes can be represented by an
N-node graph-like object, where each node is a gene (please
refer to Fig. 2 for examples). There is a directed edge from
node i to j if gene i regulates the expression of gene j. In this
case, node i is also known as the parent of node j. The time
evolution of a TRN is defined as a sequence of concentrations
of proteins in the TRN, also known as a trajectory.

In this paper, we limited ourselves to TRN that contain
three nodes. As was shown in several studies, a three-node
TRN is a minimum network that facilitates adaptations, and
a larger TRN can typically be reduced to a three-node TRN
[11], [2]. We denote the three nodes by A, B, and C (Fig. 2).
A is the input node activated by an external inducer. B is the
node that transmits the signal from A to C. C is the output
node, which is also the node of interest. Examples of three-
node TRN are given in Fig. 2. Focusing on three-node TRN
allowed us to conduct an exhaustive search of all possible
network topologies.

Adaptation is a property concerning the time evolution
of a network. Response sensitivity, defined as the difference
between the output response and the initial value, quantifies
the magnitude of biological pulses (Fig. 1). Networks capable

of generating pulses can be used for gene therapy and
the controlled delivery of drugs [21]. An adaptation error,
defined as the difference between the initial value and the
steady-state value post the induction, describes the ability of
a system to homeostatically maintain its basal activity [22]
(Fig. 1). An adaptation error equal to zero is termed perfect
adaptation.

B. Specification and Adaptive Robustness

In this work, we used BLTL formulae over linear in-
equalities over concentrations of proteins to specify the
functions of a network. A BLTL formula is built on a finite
set of predicates over protein concentrations using Boolean
operators: ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⇒
(implication) and a temporal operator ∪k (until) with bound
k [23]. More details about the syntax and the semantics
of BLTL can be found in [23]. An example of a BLTL
specification looks like:

ΦE =
(
x < 20 ∪5 x = 20

)
, (1)

where x is the concentration of a protein. ΦE means that the
concentration of protein x should reach 20 within five time
units and remain less than 20 at all preceding time units.
Satisfaction of ΦE by a trajectory σ is written as σ |= ΦE .

Assume the trajectory spans a time period of T . Let ~x
denote the vector of protein concentrations of A, B, and C.
The property of adaptation can be formally stated as:

Φ =
((
ẋC ≥ 0 ∪T

(
ẋC < 0 ∪T

(
~̇x = ~0

)))
∨(

ẋC ≤ 0 ∪T
(
ẋC > 0 ∪T

(
~̇x = ~0

))))
∧ (s > s

∗
) ∧ (e < e

∗
),

(2)

where ẋC represents the rate of change of concentration of
C, and ~̇x, the vector that contains the rates of changes of all
species’ concentrations. s and e are response sensitivity and
adaptation error; s∗ and e∗, the corresponding thresholds.

Equation (2) can be separated into two parts: everything
before the underlined and the underlined itself. The former
requires that the concentration of C first respond to the initial
stimuli either by rising or falling and then switch to recovery
before the system eventually reaches the steady state. The
latter excluds trajectories that have weak pulses or do not
return to values that are close to the initial states.

We used Probabilistic BLTL (PBLTL) to specify the
adaptive robustness of a TRN. The biochemical kinetic rates
of the TRN are allowed to vary. A PBLTL formula that
describes the ability of a network to achieve adaptations is
expressed in the form P≥θ(Φ), where Φ is the BLTL formula
described in (2), and θ is a probability. A network satisfies
the PBLTL formula if and only if a trajectory of the TRN
satisfies the BLTL formula Φ in (2) with a probability greater
than or equal to θ. We call θ the adaptive robustness of this
network. A network is more robust than another if the former
satisfies Φ with a higher probability than the latter.

The problem we considered is as follows: given a TRN
and a BLTL formula Φ, compute the adaptive robustness of
the TRN by calculating the probability θ with which the TRN
satisfies the BLTL formula Φ. Solving this problem estab-
lishes a standard criterion for comparing different networks
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and models. It provides us a framework for examining the
effects of retroactivity on adaptive robustness of TRN.

III. MATHEMATICAL MODELS

In this section, we explain how we construct and simulate
models for a TRN. In a TRN, the time evolution of any node
i that is regulated by other node(s) and/or an external inducer
can be described by the following ODE:

ẋi = fi(xi, ~yi), (3)

where xi and ~yi represent the concentrations of node i
and the parent(s) of node i, respectively. ~yi includes the
concentration of the external inducer if node i is regulated
by an external inducer. fi is expressed as:

fi(xi, ~yi) = Hi(~yi)− δixi, (4)

where δi denotes the protein decay rate. Hi(~yi) is the Hill
function that describes the regulated production rate of xi.
Under the assumption of independent binding, Hi(~yi) can
be expressed as [17]:

Hi(~yi) = ηi
πi,0 +

∑
X⊂{1,2,...,mi} πi,X

∏
j∈X

(
yij
Kij

)hij

1 +
∑

X⊂{1,2,...,mi}
∏

j∈X

(
yij
Kij

)hij
, (5)

where ηi stands for the total concentration of the promoter
that expresses node i, and mi is the number of parents of
node i. Similar to [17], here we assume that no parents of
the same node are identical. X corresponds to each complex
formed by a different combination of TF; πX denotes the
production rate of the corresponding complex per plasmid
(πi,0 is the basal production rate, i.e., the production rate
of the complex without parents); yij , hij , and Kij represent
the concentration, the Hill coefficient, and the dissociation
constant of the j-th parent of node i. In this paper, we
consider an AND logic for coregulation by multiple TF (a
special case of independent binding), i.e., the regulated gene
is turned on only when all the activators are abundant and
all the repressors are scarce. An example of a Hill-function
with the AND logic is given in Example 1.

Since a TRN is a collection of regulatory interactions
among genes, the dynamics of a TRN can be described by:

~̇x = f(~x), (6)

where ~x = [x1 x2 ... xN u]T , u is the concentration of the
external inducer, and f is the collection of functions fi (i =
1, 2, ..., N). We assume the inducer does not get produced or
degraded, so the concentration of the inducer stays constant,
i.e., u̇ = 0.

When retroactivity is considered, the equations describing
the dynamics of a TRN change from (6) to:

~̇x = [I +R(~x)]−1f(~x), (7)

where R(~x) is known as the retroactivity matrix [17]. R(~x)
can be calculated via the following equation [17]:

R(~x) =
∑
i

V T
i Ri(~yi)Vi, (8)

where Vi is binary, containing as many rows as the length
of ~yi and as many columns as the number of nodes in the
network. The element in the j-th row and k-th column of
Vi is 1 if the j-th parent of node i is node k, 0 otherwise.
Under the assumption of independent binding, Ri(~yi) is a
diagonal matrix, where the k-th entry on the diagonal rik is
[17]:

rik = ηi
h2iky

hik−1
ik

K
hik
ik

(
1 +

(
yik

Kik

)hik
)−2

. (9)

In (9), ηi stands for the total DNA concentration of node
i. yik, hik, and Kik are the protein concentration, the Hill
coefficient, and the dissociation coefficient of the k-th parent
of node i. It is easy to show that V Ti Ri(~yi)Vi is always a
diagonal matrix. Hence, R(~x) is also diagonal. More details
about retroactivity, including its derivation can be found in
[17].

A. Network Enumeration

Similar to [2], we first enumerated all possible topologies
of three-node TRN. Each node in the network may interact
with up to three nodes (two other nodes and itself). One node
may activate, inhibit, or simply not regulate another node.
There are altogether 39 = 19, 683 possible topologies, 3,645
of which have no direct or indirect links between the input
A and the output C. We considered the remaining 16, 038
topologies in our study [2].

B. Network Simulation

To investigate the effects of retroactivity on adaptive
robustness, we constructed and compared ODE models with
and without retroactivity for each topology. To reduce the
dimensions of parameter space, we normalized our models
via methods shown in [24]. An example of normalization is
given in Example 1. The normalized protein concentrations
of A, B, and C, denoted by x̃A, x̃B , and x̃C , are dimension-
less and between values of 0 and 1. For simplicity of analysis,
we assumed all normalized DNA concentrations have equal
values denoted by η̃. For each enumerated topology, one
ODE model without retroactivity and three models with
retroactivity assuming η̃ = 0.1, η̃ = 1, and η̃ = 10 were
constructed. It is easy to see from (9) that as η̃ increases, the
diagonal entries of the retroactivity matrices increase, giving
rise to higher retroactivity.

We then generated trajectories by integrating the ODE.
The initial states of A, B, and C were set to steady-state
values of the networks with no induction. At t0, the inducer’s
concentration xI was changed from 0 to 10, maximally
driving the expression of A (binding affinity KIA was set to
0.4). The kinetic parameters were sampled uniformly from
the same ranges of values used in [24]: K̃ ∼ 0.001 − 1
(sampled on the log scale), h ∼ 1−4 (sampled on the linear
scale), and δ ∼ 0.01− 1 (sampled on the log scale).

Example 1: The topology of a type-IV IFFL is given in
Fig. 2. We can describe the dynamics of a type-IV IFFL
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without retroactivity via the following model:

dxA

dt
= fA = ηA

πA

(
xI

KIA

)hIA

1 +
(

xI
KIA

)hIA
− δAxA

dxB

dt
= fB = ηB

πB

1 +
(

xA
KAB

)hAB
− δBxB

dxC

dt
= fC = ηC

πC

(
xA

KAC

)hAC
(

xB
KBC

)hBC(
1 +

(
xA

KAC

)hAC
)(

1 +
(

xB
KBC

)hBC
)

− δCxC .

(10)

With retroactivity, the dynamics can be described by:
dxA
dt

dxB
dt

dxC
dt

 =


1

1+b+a
0 0

0 1
1+c

0

0 0 1



fA

fB

fC

 , (11)

where

a = ηB
h2ABxA

hAB−1

K
hAB
AB

(
1 +

(
xA

KAB

)hAB
)−2

b = ηC
h2ACxA

hAC−1

K
hAC
AC

(
1 +

(
xA

KAC

)hAC
)−2

c = ηC
h2BCxB

hBC−1

K
hBC
BC

(
1 +

(
xB

KBC

)hBC
)−2

.

(12)

Following methods in [24], we let x̃A = xAδA
ηAπA

, x̃B = xBδB
ηBπB

,
x̃C = xCδC

ηCπC
, K̃AB = KABδA

ηAπA
, K̃AC = KACδA

ηAπA
, and K̃BC =

KBCδB
ηBπB

. The model without retroactivity shown in (10) is
normalized to:

dx̃A

dt
= fÃ = δA


(

xI
KIA

)hIA

1 +
(

xI
KIA

)hIA
− x̃A


dx̃B

dt
= fB̃ = δB

 1

1 +
(

x̃A

K̃AB

)hAB
− x̃B


dx̃C

dt
= fC̃ = δC


(

x̃A

K̃AC

)hAC
(

x̃B

K̃BC

)hBC(
1 +

(
x̃A

K̃AC

)hAC
)(

1 +
(

x̃B

K̃BC

)hBC
)

−x̃C) .

(13)

Then we let η̃AB = ηB
KAB

, η̃AC = ηC
KAC

, and η̃BC = ηC
KBC

.
The model with retroactivity shown in (11) is normalized to:

dx̃A
dt

dx̃B
dt

dx̃C
dt

 =


1

1+b̃+ã
0 0

0 1
1+c̃

0

0 0 1



fÃ

fB̃

fC̃

 , (14)

where

ã = η̃ABh
2
AB

(
x̃A

K̃AB

)hAB−1
(

1 +

(
x̃A

K̃AB

)hAB
)−2

b̃ = η̃ACh
2
AC

(
x̃A

K̃AC

)hAC−1
(

1 +

(
x̃A

K̃AC

)hAC
)−2

c̃ = η̃BCh
2
BC

(
x̃B

K̃BC

)hBC−1
(

1 +

(
x̃B

K̃BC

)hBC
)−2

.

(15)

Based on our assumption of equal normalized DNA concen-
trations, η̃AB = η̃AC = η̃BC = η̃.

IV. STATISTICAL ANALYSIS

In this section, we provide solutions to the problem
formulated in Section II.

A. Bayesian Interval Estimation

The authors of [23] presented an algorithm for estimating
the Bayesian interval that contains the true probability of
adaptation with an arbitrarily high probability. The algorithm
samples trajectories from a stochastic system iteratively and
checks each trajectory against the specification. At each
stage, the posterior mean, which is the Bayes estimator for
the probability, is updated. The algorithm terminates and
returns the probability estimate upon achieving the coverage
goal. The estimate is in the form of a Bayesian confidence
interval. Otherwise, the algorithm continues by sampling
another trajectory.

We used the above algorithm to estimate the probability
that a random execution trace of the TRN satisfies the
property of adaptation specified by a BLTL formula. Due
to practical concerns of simulation times, the BLTL formula
we implemented differs slightly from (2) and is specified as
follows:

Φ =
((

˙̃xC ≥ 0 ∪10000
(

˙̃xC < 0 ∪10000
(
||~̇̃x||∞ ≤ 10−4

)))
∨(

˙̃xC ≤ 0 ∪10000
(

˙̃xC > 0 ∪10000
(
||~̇̃x||∞ ≤ 10−4

))))
∧

(s > 0.1) ∧ (e < 0.01) .

(16)

In (16), ˙̃xC represents the rate of change of the normalized
concentration of C, and ||~̇̃x||∞ the infinity norm of the
vector containing the rates of changes of all normalized
species’ concentrations. The maximum simulation duration
is set to 10,000, and the thresholds on the response sensi-
tivity and the adaptation error are set to 0.1 and 0.01 (we
experimented with other cut-off values and arrived at the
same conclusions). We defined our BLTL specification such
that networks that spend too much time approaching steady
states or have oscillatory behaviors were excluded. For the
algorithm, a beta prior with α = β = 1 was used. For the
algorithm parameters, half interval size δ was set to 0.01,
and coverage goal c was set to 0.99. Explanations of the
algorithm parameters can be found in [23]. The probability
estimate the algorithm returns, θ̂, is the adaptive robustness
of the network.

Our simulations suggest that the type-IV IFFL (Fig. 2) has
the highest adaptive robustness among all models without
retroactivity, 0.5480. This means that the unknown probabil-
ity θ that a type-IV IFFL achieves adaptation lies in [0.5480−
0.01, 0.5480 + 0.01] with probability 1 − (1−0.99)×0.02

0.99×0.98 , if
retroactivity is not considered.

Here we consider a network model to be adaptive if its
adaptive robustness exceeds 0.05 without retroactivity. There
are altogether 71 adaptive networks, the adaptive robustness
of which, with and without retroactivity, was compared. As
is suggested by Fig. 3, higher retroactivity in general brings
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Fig. 3: Adaptive robustness of adaptive networks. X-axis
represents models without retroactivity, and Y-axis, the coun-
terparts with retroactivity. Blue circles represent models
assuming η̃ = 0.1, black pluses, models assuming η̃ = 1,
and red triangles, models assuming η̃ = 10. The black dashed
line corresponds to equal adaptive robustness.

about stronger effects on adaptive robustness, as red pluses
(η̃ = 0.1) are on average more distant from the reference
line than blue diamonds (η̃ = 1), and black circles (η̃ = 10)
more distant than red pluses.

B. Parameter Perturbation

The data points in Fig. 3 are scattered on both sides of
the reference line. This observation suggests that increasing
retroactivity can either enhance or reduce adaptive robustness
depending on the circuit topologies. To investigate the mixed
effects of retroactivity on adaptive robustness, we performed
a parameter perturbation analysis. Specifically, we randomly
selected 100 parameters that facilitate adaptations in models
without retroactivity. Keeping these parameters fixed, we set
η̃ to 0.1, 1, and 10 and simulated the counterpart models
with retroactivity. The perturbation analysis was performed
on type-IV IFFL and type-I IFFL (Fig. 2). These two
motifs are chosen because they have the overall highest
adaptive robustness among all network motifs, with and
without retroactivity. The average response sensitivity and
adaptation errors calculated for each model are shown in
Table I, which suggests that increasing η̃ enhances response
sensitivity in IFFL networks. The underlying causes are
rooted in the retroactivity matrices. Since IFFL networks
differ merely in the types of regulation, the retroactivity
matrix given in (14) and (15) is the same for all IFFL. From
(14), it is easy to see that increasing η̃ decreases ˙̃xA and
˙̃xB , i.e., changes of protein concentrations of both A and
B become slower (Fig. 4). Inhibition of B by A takes a
longer time till B reaches a sufficiently low concentration
such that B can no longer activate C. Simultaneously, η̃
does not affect ˙̃xC . Consequently, C accumulates a larger
response since ˙̃xC is unaffected by η̃, and the growth time
of x̃C becomes longer. Higher response sensitivity can lead
to higher adaptive robustness as a trajectory becomes more
likely to satisfy (16).

Our analysis above can be generalized to other network

Fig. 4: An example of trajectories simulated by non-
normalized type-I IFFL models. Values of the parameters
are: KIA = 0.4nM, KAB = 24.62nM, KAC = 10nM,
KBC = 10nM, hIA = 1, hAB = 2.60, hAC = 3.28, hBC =
2.77, δA = 0.81hr−1, δB = 0.20hr−1, δC = 0.47hr−1.
DNA concentrations increase and protein production rates
per plasmid decrease from the top figure to the bottom figure.
For fair comparison, the products of DNA concentrations
and protein production rates per plasmid are kept fixed.
Top: πAηA = 144.18nM · hr−1, πBηB = 31.29nM · hr−1,
πCηC = 80nM · hr−1; 2nd from the top: πA = 58.61hr−1,
πB = 12.72hr−1, πC = 80hr−1, ηA = 2.46nM, ηB =
2.46nM, ηC = 1nM; 2nd from the bottom: πA = 5.86hr−1,
πB = 1.27hr−1, πC = 8hr−1, ηA = 24.6nM, ηB = 24.6nM,
ηC = 10nM; bottom: πA = 0.59hr−1, πB = 0.13hr−1,
πC = 0.8hr−1, ηA = 246nM, ηB = 246nM, ηC = 100nM.
When normalized, the four models from the top to the bottom
represent no retroactivity, η̃ = 0.1, η̃ = 1, and η̃ = 10.
All parameters are within reasonable ranges of biological
parameters given in [17].

topologies. It is easy to prove that if C is not a regulator
in a network, the bottom right entry of R(~x) in (8) is
always 0. In these networks, the rate of change of C is not
slowed down by retroactivity. Increasing DNA concentrations
enhances response sensitivity in these networks, leading to
higher adaptive robustness. We found that higher retroactivity
increases adaptive robustness consistently in 74 networks,
the three most frequent motifs of which are IFFL, NFBL
between A and B, and negative self-feedback loops on B. A
common feature of these motifs is that C is not a regulator,
which confirms our hypothesis.

One direct biological implication of our findings is that
changing plasmid copy numbers can enhance adaptive ro-
bustness. One approach to increasing retroactivity while
keeping the steady-state behavior of the network unchanged
is to raise the plasmid copy number and lower the protein
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TABLE I: Results from the perturbation analysis. Mean
response sensitivity and adaptation errors calculated from
100 randomly selected parameter sets are shown in the 2nd
and 3rd columns. The adaptive robustness of these networks
inferred earlier via the algorithm shown in [23] is listed in
the last columns.

Type-IV IFFL
η̃ Response Error Robustness

N/A 0.6602 3.7× 10−4 0.5480
0.1 0.6625 3.7× 10−4 0.5497
1 0.6712 3.7× 10−4 0.5648

10 0.6935 3.7× 10−4 0.5758

Type-I IFFL
η̃ Response Error Robustness

N/A 0.3831 1.6× 10−3 0.1800
0.1 0.4027 1.6× 10−3 0.1854
1 0.5052 1.6× 10−3 0.2357

10 0.7184 1.6× 10−3 0.3463

production rate per plasmid by the same fold. An example
of such an approach is given in Fig. 4, where the plasmid
copy number and the protein production rate per plasmid
are allowed to vary, but the total protein production rate is
kept fixed. It is clear from Fig. 4 that A and B maintain
the same steady states, whereas C accumulates different
levels of response due to different degrees of retroactivity.
Experiment-wise, plasmid copy number can be raised via
an increase in plasmid dose, and protein production rate
per plasmid can be lowered by methods such as adding
nucleotides between the promoter and the transcription start
site.

V. CONCLUSIONS

We developed a framework for inferring adaptive robust-
ness via SMC and used our framework to study the effects
of retroactivity on adaptive robustness. We found that in
networks where the output is not a regulator, such as IFFL,
increasing retroactivity enhances adaptive robustness. Note,
that our framework can be applied to study the effects of
retroactivity on the robustness of other biological functions.

From a circuit design perspective, our work provides a
novel insight into a common problem of choice in synthetic
biology: whether to use a high plasmid dose of a weak
promoter or a low plasmid dose of a strong promoter to drive
gene expression. While neither choice may affect the overall
protein production rate, the former choice brings about a
higher degree of retroactivity than the latter. Our findings
suggest that appropriate choices of promoters and plasmid
doses can improve the adaptive robustness of synthetic TRN.
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