
Self-triggered Control for Safety Critical Systems
Using Control Barrier Functions

Guang Yang1, Calin Belta2 and Roberto Tron2

Abstract— We propose a real-time control strategy that com-
bines self-triggered control with Control Lyapunov Functions
(CLF) and Control Barrier Functions (CBF). Similar to related
works proposing CLF-CBF-based controllers, the computation
of the controller is achieved by solving a Quadratic Program
(QP). However, we propose a Zeroth-Order Hold (ZOH) imple-
mentation of the controller that overcomes the main limitations
of traditional approaches based on periodic controllers, i.e.,
unnecessary controller updates and potential violations of the
safety constraints. Central to our approach is the novel notion
of safe period, which enforces a strong safety guarantee for
implementing ZOH control. In addition, we prove that the
system does not exhibit a Zeno behavior as it approaches the
desired equilibrium.

I. INTRODUCTION

Real-time control is central to many cyber-physical sys-
tems, such as autonomous cars, building automation systems,
and robots. The design of a real-time controller requires
the consideration of several factors, including computational
resource constraints, actuator limitations, stability, and safety.
An effective way to address the last two objectives is to
use Control Lyapunov Functions (CLF) [1] for stability
and Control Barrier Functions (CBF) [2] for safety. This
formalism was first used in adaptive cruise control [3]. It was
also adopted in other safety-critical applications, such as lane
keeping in autonomous driving [4], quadrotor control [5], and
control of bipedal robot walking [6]. The recently introduced
notion of Exponential Control Barrier Function (ECBF)
[7] greatly reduced the complexity of designing CBFs for
systems with higher relative degree, as compared to [6],
[8]. These works compute the desired control using simple
optimization problems (typically Quadratic Programs), where
the stability and safety requirements are encoded as linear
constraints, even for non-linear systems. This formalism,
however, is based on a continuous time formulation, which
is in contradiction with the reality that these controllers
are implemented on digital platforms, where the updates to
the control law can happen only at discrete times. In this
paper, we address the problem of implementing a continuous
CLF-CBF controller on a digital platform with discrete time
updates, while preserving stability and safety properties.

Traditionally, digital controllers are implemented using
discretized periodic control inputs. A popular discretization

This material is based upon work partially supported by the National Sci-
ence Foundation under Grant NSF IIS-1723995 and NSF CMMI-1728277.

1Guang Yang is with Division of Systems Engineering at Boston Uni-
versity, Boston, MA 02215 USA. Email: gyang101@bu.edu

2Roberto Tron,2Calin Belta are with the Department of Mechani-
cal Engineering at Boston University, Boston, MA 02215 USA. Email:
tron@bu.edu, cbelta@bu.edu

method is the Zeroth-Order Hold (ZOH). This approach
has two potential major drawbacks when naively combined
with the CLF-CBF formalism for safety-critical applications.
First, given a fixed update period, there is no guarantee that
the safety constraints will hold. Since the plant is sampled
at a fixed frequency, the system could violate the safety
constraints in between two sampled time instances. Second,
there are unnecessary computations and control updates due
to fixed-time sampling. This is cumbersome for a system
with constrained computational resources and actuator life.

In this paper, we propose to use self-triggered control [9]
to address these issues. Self-triggered control was introduced
in [10], and related works include [11], [12],[13] and [9].
The core of all self-triggered controllers consists of two
parts. First, a designed feedback controller computes the
control input at a given time instance. Second, it proactively
determines the next controller update time instance based on
current state and control objective.

In this work, we propose a novel self-triggered controller
that pre-computes the next update time instance given the
current state, control objective, and safety requirements.
While the controller is applied in a ZOH manner, we ensure
that the constraints are not violated between updates.

II. PRELIMINARIES

A. Notation

We use Z and Rn to denote the set of integers and the
set of real numbers in n dimensions, respectively. The Lie
derivative of a smooth function h(x(t)) along dynamics
ẋ(t) = f(x(t)) is denoted as £fh(x) := ∂h(x(t))

∂x(t) f(x(t)).
We use £rbf h(x) to denote a Lie derivative of higher order rb,
where rb ≥ 0. A function f : Rn 7→ Rm is called Lipschitz
continuous on Rn if there exists a positive real constant
L ∈ R+, such that ‖f(y)− f(x)‖ ≤ L‖y − x‖,∀x, y ∈ Rn.
Given a smooth function h : Rn 7→ R, we denote hrb as its
rb-th derivative with respect to time t. A continuous function
α : [−b, a) 7→ [−∞,∞), for some a, b > 0, belongs to the
extended class K if α is strictly increasing and α(0) = 0.

B. Safety Constraints and Control Barrier Functions

Consider a continuous time dynamical control system

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, u ∈ Rm, and f(x), g(x) are locally Lipschitz
continuous. Let x0 := x(t0) ∈ Rn denote the initial state.
For any initial condition x0, there exists a maximum time
interval I(x0) = [t0, tmax) such that x(t),∀t ∈ I(x0) is a
unique solution. Next, we define a set of safety constraints.

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7926-5/$31.00 ©2019 AACC 4454

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:52:44 UTC from IEEE Xplore. Restrictions apply.

Given a continuously differentiable function h : Rn 7→ R,
we define a closed safety set C:

C = {x ∈ Rn|h(x) ≥ 0}.
∂C = {x ∈ Rn|h(x) = 0},

Int(C) = {x ∈ Rn|h(x) > 0}.
(2)

The set C is called forward invariant for system (1) if x0 ∈
C implies x(t) ∈ C, ∀t ∈ I(x0).

Given a continuously differentiable h : Rn 7→ R, and
dynamics (1), the relative degree rb ≥ 0 is defined as the
smallest natural number such that £g£rb−1f h(x)u 6= 0. The
time derivative of h are related to the Lie derivatives by:

hrb(x) = £rbf h(x) +£g£
rb−1
f h(x)u. (3)

To ensure forward invariance for systems with higher relative
degrees, the authors of [7] introduced the notion of Expo-
nential Control Barrier Function (ECBF). Before formally
reviewing its definition, a transverse variable is defined as
ξb(x) =

[
h(x), ḣ(x), ·, ·, hrb(x)

]T
together with a virtual

control µ = (£g£
rb−1
f h(x))−1(µ − £rbf h(x)). The input-

output linearized system corresponding to (1) is

ξ̇b(x) = Abξb(x) +Bbµ,

y = Cbξb(x) = h(x),

with

Ab =


0 1 · · · 0
...

...
. . .

...
0 0 0 1
0 0 0 0

 , Bb =

0
...
0
1

 , (4)

Cb = [1 0 · · · 0] . (5)

Definition 1: Consider the dynamical system in (1) and
the closed set C in (2). Given a continuously differentiable
function h : Rn 7→ R with relative degree rb = 1, if there
exits a locally Lipschitz extended class K function α and a
set C, such that

inf
u∈U

[£fh(x)+£gh(x)u+ α(h(x))] ≥ 0,∀x ∈ Int(C),

then h(x) is a Zeroing Control Barrier Function (ZCBF) [14]
and it implies forward invariance of system (1).

Definition 2: Consider a dynamical system (1), the safety
set C defined in (2) and h(x) with relative degree rb ≥
1. Then h(x) is an Exponential Control Barrier Function
(ECBF) [7] if there exists Kb ∈ R1×rb , such that

inf
u∈U

[£rbf h(x)+£g£
rb−1
f h(x)u+Kbξb(x)] ≥ 0,∀x ∈ Int(C),

(6)
where the row vector Kb must be selected such that the
matrix Ab −BbKb has eigenvalues with negative real parts.

Remark 1: As pointed out in [7], the ZCBF is a special
case of ECBF with relative degree rb = 1.

C. Stabilization with Control Lyapunov Functions

Definition 3: Given the system (1), a continuously dif-
ferentiable function V : Rn 7→ R is an Exponentially-
Stabilizing Control Lyapunov Function (ES-CLF)[15] if
there exist positive constants c1, c2, ε ≥ 0, such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2,
infu∈U [£fV (x) +£gV (x)u+ εV (x)] ≤ 0, ∀x ∈ Rn.

(7)
The existence of a ES-CLF implies that there exists a set of
controllers

KES−CLF = {u ∈ U : £fV (x)+£gV (x)u+εV (x)] ≤ 0},

such that the system is exponentially stabilized [15], i.e.

x(t) ≤
√
c2
c1
e−

ε
2 t‖x0‖, ∀t ≥ 0 (8)

D. Zeroth-Order Hold

The Zeroth-Order Hold (ZOH) control mechanism holds
the control signal at tk over a period of time, i.e. u(s) =
u(tk),∀s ∈ [tk, tk+1). The sequence of control update time
instants {tk}k∈N is strictly increasing.

III. PROBLEM FORMULATION

Let the continuous dynamical system defined in (1) with
an initial state x0 ∈ Int(C). We want to stabilize the
system to a desired state xd ∈ Rn under discretized control
input while guaranteeing forward invariance of the safety
set defined in (2). We propose a self-triggered controller that
uses a Quadratic Program (QP) to compute the control signal,
and that actively computes the next update instance given
the safety constraints and control objective. In particular,
we introduce the notions of a safe periods for the safety
constraints (τCBF) and for the stability constraints (τCLF).
These safe periods are computed by means of a lower bound
on the ECBF constraints, upper bounds on the CLF, and
bounds on the trajectories of the system (i.e., we do not
require an explicit integration of the dynamics (1)).

IV. SELF-TRIGGERED CONTROL USING CBF

In this section, we define the CLF-CBF QP for our
controller. Next, the notion of safe periods for the CBF
and CLF constraints is introduced. Lastly, we present the
complete controller update strategy.

A. CBF-CLF Quadratic Program formulation

Given (1), the CBF-CLF QP is defined as

min
u∈U

uTu

s.t. £rbf h(x) +£g£
rb−1
f h(x)u+Kbξb ≥ 0,

£fV (x) +£gV (x)u+ εV (x) ≤ 0,

x(tk) ∈ Int(C),

(9)

The control input is constrained to be in a convex set U ,
which can be used to model practical actuation limits (e.g.,
for u ∈ R, we might have lower and upper bounds ul and
uu, respectively).

4455

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:52:44 UTC from IEEE Xplore. Restrictions apply.

At every update instance tk, we solve (9) to compute
the optimal control input uk. This control is applied in a
ZOH manner until the next update instance tk+1. At a high
level, the strategy used by our self-triggered controller is
to evaluate whether, with uk applied in a ZOH manner,
the ECBF constraint in (9) will still hold in the interval
tk+1 ≥ t ≥ tk, and whether the CLF will decrease at the
end of the same period.

B. Distance bound on a system trajectory

For the computation of the safe periods for the ECBF
constraints, we rely on bounds for the inequalities in (9).
More specifically, we propose to find a bound on the system
trajectory that exclusively depends on general properties of
the system dynamics. Since we evaluate the trajectory bound
at every tk, we denote rtk(t) = r(t+tk),∀t ≥ tk. Our upper
bound of rtk is denoted as rtk .

Proposition 1: Given the dynamical system defined in
(1), starting at x(tk), the distance between the trajectory
x(t + tk) and x(tk) is bounded by rtk(t) =

1
L‖f(x(tk)) +

g(x(tk))uk‖(eL(t−tk) − 1),∀t ≥ tk.
Proof: Let rtk(t) = ‖x(tk + t) − x(tk)‖. Its

derivative ṙ(t) can be calculated as ṙ(x(t + tk)) =
(x(t+tk)−x(tk))T
‖x(t+tk)−x(tk)‖ f(x(t + tk), u). Since (x(t+tk)−x(tk))

‖x(t+tk)−x(tk)‖ is a
unit vector, we have

ṙtk ≤ ‖f(x(t+ tk), u)‖
≤ ‖f(x(t+ tk), u)− f(x(tk), u)‖+ ‖f(x(tk), u)‖.

(10)

Because of the assumption on the Lipschitz continuity of the
system dynamics, the following condition holds ‖f(x(t +
tk), u) − f(x(tk), u)‖ ≤ L‖x(t + tk) − x(tk)‖, with L as
the Lipschitz constant for f . By plugging the inequality into
(10), we get ṙtk(t) ≤ Lr(t+tk)+‖f(x(tk), u)‖. In this case,
‖f(x(tk), u)‖ = ‖f(x(tk)) + g(x(tk))uk‖. The solution is

rtk(t) = r0e
L(t−tk) − 1

L
‖f(x(tk)) + g(x(tk))uk‖. (11)

The constant r0 is determined by the condition rtk(0) =
rtk(0), that is r0 = ‖f(x(tk)) + g(x(tk))uk‖/L. We then
have rtk < r(tk), based on the comparison theorem.
Once we have rtk(t), we can define a ball that bounds the
trajectory under system dynamics (1) as Brtk = {x ∈ Rn :
‖x(t)− x(tk)‖ ≤ rtk}.

C. CBF Safe Period

Definition 4 (Safe Period): For the dynamical system in
(1), starting at x(tk) ∈ Int(C), if there exists a τCBF such
that x(tk+τCBF) ∈ Int(C) for all t in the safe time window
[tk, tk+ τCBF] under a constant control input uk, then τCBF

is a safe period for this system and control at tk.
Based on (6), we define the ECBF constraint as

ζECBF(x(t)) = £rbf h(x)+£g£
rb−1
f h(x)u+Kbξb(x) (12)

for x ∈ Int(C). Based on (6), the system is forward
invariant if and only if ζECBF(x(t)) ≥ 0. We can determine
the safe period τCBF by using rtk(t) to obtain lower bound

ζ
ECBF

(x(t)), so that we do not need to rely on the closed-
form solution of x(t); in other words, we will rely on the
implication

ζ
ECBF

(t) ≥ 0 =⇒ ζECBF(x(t)) ≥ 0,∀tk+1 ≥ t ≥ tk.

At an update instance tk, we define the initial condition
ζ
ECBF

(tk) = ζECBF(x(tk)). To simplify the notation for the
remainder of the section, we define ζ(x(t)) := ζECBF(x(t))
(with a similar definition for ζ). Then ζ(t) can be obtained
by another application of the comparison theorem to the
following:

ζ(t) = ζ̇(t)t+ ζ(tk), (13)

where ζ̇(t) ≤ ζ̇(t),∀tk+1 ≥ t ≥ tk. To find ζ̇(t), we first
denote the derivative of ζ(x(t)) as

ζ̇(x(t)) =
∂ζ(x(t))

∂x
(f(x(t)) + g(x(t))u)

After factoring out each term i.e., ∂ζ(x(t))
∂x f(x(t)) and

∂ζ(x(t))
∂x g(x(t))u, we will get an expression in terms of state

x(t) and control u. Since the control u is constant under
ZOH, we only need to consider the bound on the state. By
using proposition (1), we can use rtk(t) to bound the state
and use the Lipschitz conditions ζ, f and g to get ζ(t) (details
are omitted due to space constraints).

Remark 2: Notice ζ(t) is time dependent because we
replace state x(t) with r(t) in our original safety constraint
ζ(x(t)). We do not need to calculate a closed-form solution
from (1) to evaluate the safety constraint.

With the lower bound ζ(t), we can determine the safe
period τCBF, such that ζ(tk + τCBF) = 0. The problem
is equivalent to finding a root for ζ. If the closed-form
solution of (13) in terms of t is difficult to obtain, we can use
algorithms such as the secant method [16] to find its roots. If
there are multiple CBF constraints, we denote i-th constraint
to be ζi. The safe period that satisfies all CBF constraints is

τCBF = min(τCBF,i),∀i. (14)

D. CLF Update Period
In addition to the safety constraints (12), the CLF con-

straint is also used to calculate the next update time tk+1.
Intuitively, the resulting trajectory might overshoot the equi-
librium if we naively apply the following update rule tk+1 :=
tk + τCBF .

Because the QP formulation is solved point-wise in time,
we cannot guarantee the property of exponential convergence
to the desired state on a ZOH implementation. To achieve
at least asymptotic stability, we define a CLF update period
which guarantees that the Lyapunov function decreases at
every step.

Definition 5 (CLF Update Period): For the dynamical
system defined in (1), the τCLF is a CLF update period,
if V (x(tk + τCLF))− V (x(tk)) ≤ 0.

For systems that do not have a closed-form solution for
their trajectories, we need to find an upper bound V (t) such
that V (t) ≥ V (x(t)),∀tk+1 ≥ t ≥ tk,

V (t) ≤ 0 =⇒ V (x(t)) ≤ 0,∀tk+1 ≥ t ≥ tk. (15)

4456

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:52:44 UTC from IEEE Xplore. Restrictions apply.

The upper bound for V (x(t)) can be found using the
descent lemma [17]. The following inequality holds ∀tk+1 ≥
t ≥ tk

V (t) ≤ V (tk) + (t− tk)V ′(tk) + (t− tk)2
D

2

.
= V (t).

(16)

where D := maxx∈Int(C) V
′′, and we used the notation

V (t) = V (x(t)); see [17] for a proof.
Remark 3: We can get sharper bounds on D by maximiz-

ing the second derivative on C ∩ {x : V (x) < V (x(tk))}.
Remark 4: We use different bounds for computing τCBF

and those used for τCLF because otherwise in many common
situations we would start with a bound very close to zero near
the equilibrium, thus implying a vanishing τCLF .

Since V (t) is a quadratic function in terms of t, there
exists a closed-form solution for the roots. The condition
that we want to enforce when determining τCLF is V (t) −
V (x(tk)) ≤ 0, leading to the non-zero root of V (t) = 0 as

τCLF =
−2V ′(x(tk))

D
. (17)

Assumption 1: By using the following inequality con-
straint V ′(x(t)) ≤ −εV (x(t)) defined in (9), we assume
there is a neighborhood of equilibrium such that for the
optimal solution from solving the QP, the inequality above
becomes the equality V ′(x(t)) = −εV (x(t)). We expect
that this assumption is valid given the nature of the cost
and constraints of the QP, i.e., satisfying the CLF constraint
while minimizing control effort. As the system approaches to
equilibrium, the Lyapunov Function V (x) decreases toward
zero, and optimal control input u will also converge to zero
so the CLF constraint will be the only active constraint, while
all the others become inactive.

Proposition 2: Given the continous time system (1),

lim
x→xd

τCLF > 0, (18)

that is, as the system converges the sequence of τCLF is
bounded away from zero, thus avoiding Zeno behaviour.

Proof: We need to show the limit (18) becomes a
constant strictly greater than zero as the system approaches
to the desired state, i.e. Given the Assumption 1, we can get

τCLF =
2εV (x(tk))

D
=

2εV (x(tk))

maxx∈Int(C) V ′′(x(t))
. (19)

In addition, there exits a closed-form solution for control
u with respect (9). Given the equality assumption, we can
analytically determine the control input as

u∗ =
−εV (x(t))−£fV (x(tk))

£gV (x(tk))
. (20)

Since V ′′(x(t)) depends on both state x(t) and control u.
By using the closed form of optimal control input (20), the
numerator and denominator of (19) have the same order in
terms of V (x(t)). Therefore, τCLF becomes a constant as
the system approach the desired equilibrium.
The self-triggered control algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Self-Triggered Control with CBF Constraints

1: procedure SELFTRIGGERED(x0,Kb,h(x))
2: x(tk) := x0, ∀x0 ∈ Int(C)
3: while x(tk) /∈ Goal do
4: Calculate optimal uk by solving (9)
5: Calculate the safe period τCBF from (14)
6: Calculate the CLF update period τCLF from (17)
7: tk+1 := tk +min(τCBF, τCLF)
8: For system (1), hold uk between [tk, tk+1]
9: end while

10: end procedure

V. APPLICATION TO A SECOND ORDER INTEGRATOR

In this section, we concretely apply the previous theory to
the case of a simple second order integrator. Let us define
the system to be[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u. (21)

Given the dynamic system (21), we define safety sets
h1(x) = x1(t) − x1,min, h2(x) = −x1(t) + x1,max,
h3(x) = x2(t) − x2,min, h4(x) = x2,max, where
x1,min, x1,max, x2,min, x2,max are constants. The goal is
to stabilize our system to a desired state [x1,d, x2,d]

T ,
while maintaining forward invariance of the set C =
x ∈ R2 : hi(x) ≥ 0, i ∈ {1, . . . , 4}}.

A. CBF-CLF formulation

Given (21), and setting α(h(x)) = kh(x), where k is
a relaxation constant, we have the following four CBF
constraints,

ζ1 = u+ k1x2 + k2(x1 − x1,min),
ζ2 = −u+ k1(−x2) + k2(−x1 + x1,max),

ζ3 = u+ k(x2 − x2,min),
ζ4 = −u+ k(−x2 + x2,max).

If ζi ≥ 0, i = 1, ..., 4 holds, then our system is forward
invariant. We define the control objective to be x1,d = 5
and x2,d = 0. The Lypaunov Function candidate for this
particular example is

V (x) =

[
x1 − x1,d

x2

]T [
1 0.5
0.5 1

] [
x1 − x1,d

x2

]
. (22)

Given (7), we define the CLF constraint to be

η(x) = [2x2 + (x1 − x1,d)]u+ x2(2(x1 − x1,d) + x2) + εV.
(23)

The QP formulation for system (21) is

min
u∈U

uTu

s.t. ζi ≥ 0, i = 1, ..., 4, η ≤ 0

x(tk) ∈ Int(C), ul ≤ u ≤ uu.

(24)

4457

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:52:44 UTC from IEEE Xplore. Restrictions apply.

B. Computation of the CBF safe period

To obtain the lower bounds for ζi, we first calculate the
derivatives ζ̇i: ζ̇1 = k1x2 + k2uk, ζ̇2 = −k1x2 − k2uk, ζ̇3 =
uk and ζ̇4 = −uk. Given the trajectory bound rtk(t), we
can obtain derivative bounds ζ̇i for ζ̇i. The resulting CBF
constraint bounds are shown as the following:

ζ1 = (k1(x2(tk)− rtk(t))− k2‖uk‖)t+ ζ1(tk),

ζ2 = (−k1(x2(tk) + rtk(t))− k2‖uk‖)t+ ζ2(tk),

ζ3 = −k‖uk‖t+ ζ3(tk),

ζ4 = −k‖uk‖t+ ζ4(tk).

Remark 5: Note ζi, i = 1, ..., 4 do not depend on
x(t),∀t > tk. We can therefore obtain safe period τi by
directly finding the roots of ζi, i.e. ζi(tk + τi) = 0.

C. Computation of CLF update period

For an update instance tk, the V (t) is obtained from
Taylor-expansion at tk. Given V (x(t)) defined in (22), and
letting x2 := x2(tk), x1 := x1(tk), its first derivative is

V ′(x(tk)) = 2x2(x1 − x1,d) + x22 + ((x1 − x1,d) + 2x2)uk

Moreover, to find an appropriate value D, we obtain the
second derivative as

V ′′(x(tk)) = 2x22 + 2uk(x1 − x1,d) + 3x2uk + 2u2k,

where control input uk and desired states x1,d are constants.
Remark 6: Given the candidate Lyapunov Function (22),

the following inequality holds ‖x1(t)− x1,d‖ ≤
√
V (x(t)),

‖x2(t)‖ ≤
√
V (x(t)).

We use Remark 6 to find the maximum value of V ′′(x(t)).
With xtk := [x1(tk), x2(tk)]

T , the D is chosen as

D = maxV ′′(x(t))

= 2V (xtk) + 2|uk|
√
V (xtk) + 3|

√
V (xtk)||uk|+ 2|uk|2

(25)

Next, we would like to show that τCLF is finite as the
system approaches the equilibrium, so that the controller
does not update infinitely fast as we approach to the desired
state. Substituting D in (19), we have

lim
x1→x1,d,x2→0

2εV (x(t))

2V (x(t)) + 5
√
V (x(t))|u∗|+ |u∗|2

; (26)

substituting u∗ from (20), it can be shown that the numerator
and denominator have the same rate of convergence as x1 →
x1,d and x2 → 0. Therefore, lim τCLF is a constant when
the system approaches the equilibrium.

Now we can obtain V (t) that is defined in (16), where D
is calculated using (25) at each update instance. The CLF
update period is

τCLF =
−2(2x2(x1 − x1,d) + x22 + ((x1 − x1,d) + 2x2)uk)

D
.

D. Simulation

Given the double integrator system (21) and an initial
state x0 = [6, 5]T , the objective is to reach x1,d = −7,
x2,d = 0. The safety constraints are x1,min = −10,
x1,max = 10, x2,min = −10 and x2,max = 10. The
two approaches: self-triggered and periodic controls, are
both used for comparison. We define self-triggered control
updating interval as ts and periodic control updating interval
as tp. To solve the CBF-CLF QP problem, we set ε = 0.8,
L = 1, Kb = [105, 20.5], [ul, uu] = [−20, 20], tp =
0.75, and ts = min(τCBF, τCLF). At each controller update
instance tk, the CBF-CLF Quadratic Program (24) is solved
in Matlab 2018a with Core i5-8259U CPU. The elapsed time
for solving each QP problem is around 0.0019s.

The result is illustrated in Figures 2(a) and 2(b). In the case
of self-triggered control, it is clear that the controller only
updates when the system is about to violate CBF constraints
or the system is deviating away from the desired states.
Notice that, the update interval for self-triggered controller
becomes a lot faster as the system approaches to the unsafe
region (x1 < x1,min) in order to prevent violation on safety
constraint. Moreover, the CLF update period converges to
0.3166s and remains as a constant as system approaches
to equilibrium, which validate the proposition (2). In the
periodic controller case, the position x1 violates x1,min
constraint for t ∈ [3, 4]. (See Figure 1 for a different per-
spective). It clearly demonstrates the issues with the periodic
controller in real-world situation i.e., the controller neither
knows the correct sampling rate in-advance, nor has the
ability to adjust it real-time. All the safety and convergence
properties from CBF and CLF formulation could fail when
applying the controller in this manner.

-10 -5 0 5 10

x
1

-10

-8

-6

-4

-2

0

2

4

6

8

10

x
2

Initial

State

(a) Self-triggered control.

-10 -5 0 5 10

x
1

-10

-8

-6

-4

-2

0

2

4

6

8

10

x
2

Initial

State

(b) Periodic control.

Fig. 1: System trajectories for the two types of controllers.

VI. CONCLUSION

In this paper, we proposed a self-triggered controller
with CBF-CLF based QP formulation that guarantees the
safety of our system under ZOH updates while avoiding
Zeno behaviour toward convergence. It is a starting point
to bridge the gap between theoretical work and real-life
implementation based on digital computers. We validated our
approach on a double integrator. In the future, we plan to
apply our techniques to more complex systems.

4458

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:52:44 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15

t

-10

-5

0

5

10

x
1

Position x
1
 over time

x
1
 trajectory

x
1,min

x
1,max

Control Update

0 5 10 15

t

-10

-5

0

5

10

x
2

Velocity x
2
 over time

x
2
 trajectory

x
2,min

x
2,max

Control Update

0 5 10 15

t

-20

-15

-10

-5

0

5

u

Control u over time

Self-Triggered Control

(a) Self-triggered control with variable time step.

0 5 10 15

t

-10

-5

0

5

10

x
1

Position x
1
 over time

x
1
 trajectory

x
1,min

x
1,max

Control Update

0 5 10 15

t

-10

-5

0

5

10

x
2

Velocity x
2
 over time

x
2
 trajectory

x
2,min

x
2,max

Control Update

0 5 10 15

t

-20

-15

-10

-5

0

5

10

u

Control u over time

Fixed Time Control

(b) Periodic control with constant time step (the trajectory is interrupted due to violation of a constraint on x1).

Fig. 2: Position, velocity, and control inputs for the two types of controller.

REFERENCES

[1] H. K. Khalil, “Noninear systems,” Prentice-Hall, New Jersey, vol. 2,
no. 5, pp. 5–1, 1996.

[2] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467,
2007.

[3] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference
on. IEEE, 2014, pp. 6271–6278.

[4] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[5] L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based
maneuvers for teams of quadrotors using differential flatness,” arXiv
preprint arXiv:1702.01075, 2017.

[6] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
American Control Conference (ACC), 2015. IEEE, 2015, pp. 4542–
4548.

[7] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference (ACC), 2016. IEEE, 2016, pp. 322–328.

[8] G. Wu and K. Sreenath, “Safety-critical geometric control for systems
on manifolds subject to time-varying constraints,,” IEEE Transactions
on Automatic Control (TAC), in review, 2016.

[9] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2030–2042, 2010.

[10] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model
for real-time control systems,” in Work-in-Progress Session of the 24th
IEEE Real-Time Systems Symposium (RTSS03), vol. 384, 2003.

[11] M. Mazo and P. Tabuada, “Input-to-state stability of self-triggered
control systems,” in Decision and Control, 2009 held jointly with the
2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings
of the 48th IEEE Conference on. IEEE, 2009, pp. 928–933.

[12] M. Mazo Jr, A. Anta, and P. Tabuada, “An iss self-triggered implemen-
tation of linear controllers,” Automatica, vol. 46, no. 8, pp. 1310–1314,
2010.

[13] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems
with finite-gain l2 stability,” IEEE transactions on automatic control,
vol. 54, no. 3, p. 452, 2009.

[14] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of
control barrier functions for safety critical control,” arXiv preprint
arXiv:1612.01554, 2016.

[15] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[16] R. P. Brent, Algorithms for minimization without derivatives. Courier
Corporation, 2013.

[17] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

4459

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 02,2024 at 02:52:44 UTC from IEEE Xplore. Restrictions apply.

