l‘)

Check for
updates

Reactive Control Meets Runtime
Verification: A Case Study of Navigation

Dogan Ulus®™ and Calin Belta

Boston University, Boston, MA, USA
doganulus@gmail.com

Abstract. This paper presents an application of specification based run-
time verification techniques to control mobile robots in a reactive man-
ner. In our case study, we develop a layered control architecture where
runtime monitors constructed from formal specifications are embedded
into the navigation stack. We use temporal logic and regular expressions
to describe safety requirements and mission specifications, respectively.
An immediate benefit of our approach is that it leverages simple require-
ments and objectives of traditional control applications to more com-
plex specifications in a non-intrusive and compositional way. Finally, we
demonstrate a simulation of robots controlled by the proposed architec-
ture and we discuss further extensions of our approach.

1 Introduction

Mobile robots are designed to work either in static and fully predictable environ-
ments such as automated warehouses or in open, partially unknown, and con-
stantly changing environments. Classical deliberative control often works well
for the former case while being inadequate or very inefficient for the latter.
Alternatively, in reactive control approaches, robots continuously observe the
environment at every level and thus are able to react and adapt to previously
unknown circumstances. A common point between reactive control and runtime
verification is that they both trade the completeness guarantees of deliberate
control and model checking for online computation, practicality, and scalability.
Following this synergy and growing interest in robotics using formal specifica-
tions, we think runtime verification techniques can raise the level of abstraction
and assurance of reactive controllers in robotic applications.

In this paper, we explore the combination of reactive control and runtime
verification techniques to construct controllers for mobile robots that satisfy
given safety requirements and high-level mission specifications. To this end, we
use a multi-layered architecture that can be seen in many reactive controllers
and enhance each layer with runtime monitors' to search for desired behaviors
on-the-fly. We depict our navigation architecture that contains several compo-
nents from reactive control and runtime verification domains in Fig.1. At the

! https://github.com/doganulus/python-monitors.

© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 368-374, 2019.
https://doi.org/10.1007/978-3-030-32079-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_21&domain=pdf
https://github.com/doganulus/python-monitors
https://doi.org/10.1007/978-3-030-32079-9_21

Reactive Control Meets Runtime Verification: A Case Study of Navigation 369

Runtime Verification

..............

v '
i 1
A\Iclnn.tor —+—>| Select Goal
Mission

'
'
'
'
!
v
1 " ' .
Generate Mr_)mi,or
Routes ' Requirements
'
'
'
'

'
'
'
-
'
'
]
'
'
'
'
'
]
'

v

Robot

Fig. 1. The navigation stack used in the case study

Generate Monitor
'

Select,
Trajectories 1 | Requirements Controls

bottom layer of the architecture, we employ limited trajectory search to devise
the short-time motion of the robot. Runtime monitors are embedded to find
trajectories that satisfy low-level safety properties such as collision avoidance
and one-way regulations. The middle layer addresses the shortcomings of short-
horizon trajectories by searching for a route over a connectivity graph of the
environment. Mid-level safety properties for the graph traversal (e.g. avoiding
specific areas) are similarly checked using runtime monitors in this layer. Once
undesired trajectories and routes are filtered out, we use a number of features
and heuristics to select the best one among the remaining. Repeating these pro-
cedures in real-time produces a safe motion for the robot to reach a specific
(goal) location relative to trajectory/route generation specifics. Finally, the top
layer is designated for high-level mission control that enforces the correct order
of locations to be visited and we similarly employ runtime monitors constructed
from mission specifications for the mission control.

2 Environment, Robots, and Specifications

For our case study, we will work on a relatively complex 2D environment designed
to give a representative view of real challenges without introducing too much
detail. Depicted on the left of Fig. 2, our environment represents an office space
with rooms (R1-R6), narrow passages (such as doors D1-D6), named locations
(A-D), and some regulations at certain regions (one-way regions) including other

R1 D1 D B/—\DQ D3

. N
|0 T e
0% o | S~ S~

c 2 /

D6A
% D5 % D6A D5 A

R4 | R5 | R6 D4 % o~ “eocC T6E

Fig. 2. Environment maps: Geometric on the left and topological on the right

370 D. Ulus and C. Belta

(possibly uncontrolled) agents. We use a unicycle velocity-controlled model for
the robot dynamics where the state space is defined by robot’s position (z,y)
and orientation #, and controlled by forward and angular velocity commands
u = (v,w). It is of critical importance that the complexity of the environment
determines the complexity of specifications and monitoring. For a static environ-
ment (that is to say, nothing changes outside of our control), we do not need any
runtime monitoring at all. This is obviously a very strong assumption for many
cases. On the other hand, if dynamic obstacles (such as other agents) exist in the
environment, we have to at least add a basic monitoring mechanism that checks
simple propositions—will the robot collide with anything soon or did the robot
reach its goal? Moreover, if we have more complex regulations and tasks to com-
plete in the environment, runtime monitors automatically constructed from rich
specification languages seem a preferable option. Therefore, our robots in this
study are assigned to perform complex navigation missions, specified by regular
expressions, while avoiding static and dynamic obstacles as well as satisfying
desired properties and regulations, specified by temporal logic formulas.

3 Search for Safe Motion

We here demonstrate an application of runtime monitors in searching for the
desired safe behavior enhancing existing trajectory and route search algo-
rithms. The general procedure can be summarized in three steps: (1) Gener-
ating a number of alternative behaviors (trajectories or routes), (2) discard-
ing unsafe/undesired behaviors using runtime monitors, and (3) selecting the
best remaining (thus safe) behaviors according to a predefined set of heuris-
tics. Importantly, the extent of these search processes is limited due to available
computational resources as well as that long-term complete plans may become
invalid very quickly in dynamic and uncertain environments. In the following,
we give more details about search procedures and actual properties used in the
case study.

Trajectory Search. Dynamic Window Approach (DWA) [3] is a well-known
collision avoidance and local motion planning algorithm that uses search pro-
cedures to find control actions (velocity commands) while considering robot’s
dynamics. The search space of DWA is limited by maximum acceleration avail-
able to the robot as depicted on the left of Fig. 3 and the algorithm samples a set
of control actions. Then it calculates the future trajectories of each alternative
action over a limited time horizon as illustrated on the right of the figure.
Originally being a collision avoidance algorithm, the only safety requirement
over these trajectories considered in DWA is never getting dangerously close to
obstacles, which is usually hard-coded into the algorithm. On the other hand, we
are interested in checking such requirements using runtime monitors so that we
can extend the approach for any temporal logic formula. We start our case study
by expressing the collision avoidance requirement in temporal logic as follows.

never (dangerously_close (obstacles)) (CA)

Reactive Control Meets Runtime Verification: A Case Study of Navigation 371

where dangerously_close is a predicate that computes whether any intersection
occurs between obstacles and robot’s footprint.

A

Change in Forward Velocity (Av)

—6

Change in Angular Velocity (Aw)

Fig. 3. (Left) A finite set of admissible velocity commands for the next time step
relative to the current velocity. The search space, depicted in gray, is constrained by
maximum allowed accelerations of the robot. (Right) Future trajectories of the robot
simulated for each admissible velocity command. Dashed trajectories contain a viola-
tion in specification so commands that lead to these trajectories are discarded.

In this case study, besides collision avoidance, we also want our robot to obey
one-way regulations of the environment, which state that robots have to move in
a single direction inside certain regions. The direction of one-way regions is either
west or east in our environment. We call these regions westways and eastways
accordingly and predicates inside westway and inside_eastway check whether
the robot is in these regions. Moreover, we define some auxiliary formulas to
detect whether the robot just entered a one-way region such that

entered_eastway : inside_eastway and not previously inside_eastway

entered_westway : inside_westway and not previously inside_westway

The desired direction in a one-way region is checked by predicates going_east
and going west and we write our safety properties for each type of one-way
regions as follows:

inside_eastway implies (going.east since entered eastway) (OW—E)

inside_westway implies (going west since entered_westway) (OW—W)

Finally, we construct our runtime monitor to check the conjunction of (CA),
(OW-E), and (OW-W) requirements over generated trajectories. Control actions
that produce violating trajectories are discarded before the selection phase. This
ensures the safety of selected control action if there exists one in alternatives

372 D. Ulus and C. Belta

otherwise we apply a full brake. The last piece of trajectory search is to select the
best one among safe trajectories according to a weighted sum of some predefined
heuristics, namely final speed of the trajectory (higher is better), final-distance-
to-goal (lower is better), minimum-distance-to-obstacles (higher is better). In
the case study, the actual values of weights are found empirically.

Route Search. Given a connectivity graph of these locations, we can search for
a route from the current location to the actual goal location and each node on
the route is passed to the lower layer as a (sub) goal. In the search of a suitable
route, we need to take into account some extra requirements. On the other hand,
external runtime monitors are desirable to enforce application-specific properties
as in trajectory search rather than generating a new graph search algorithm for
each and every one of them. For example, consider a property such that the
robot never uses the door D6A when going from the location D to A, which can
be expressed as follows.

(visit(A) && once visit(D)) -> (!visit(D6A) since visit(D)) (ND)

We then construct a runtime monitor from the property (ND) to check routes
generated over the graph. In particular, we use an off-the-shelf implementation
of the shortest path algorithm [8] that generates simple paths starting from
the shortest one. Sequentially checking these paths using runtime monitors con-
structed from temporal logic formulas [4,6] ensures that the we select the shortest
route that satisfies specified properties and then we can update the route of the
robot accordingly.

4 Navigate by Regular Expressions

In this section, we use regular expressions to specify complex navigation missions
and guide the mission execution via runtime monitors constructed from the
specification. Navigation missions describe the desired behavior of the robot
over a set of observations and regular operations of sequential composition (;),
alternative choice (), and repetition (*) are used to express the ordering between
these observations. For example, a robot is said to reach a region A when it was
outside for a while and then entered the region A. We can specify such a behavior
using regular expressions as follows:

reach(A) = (outside(A))*; inside(A)

where atomic propositions inside (A) and outside (A) check whether the robot
is in the region A or not. Similarly more complex missions are obtained by com-
posing simple missions as below.

missionl : (reach(C); reach(B) |reach(D); reach(A))* (M1)

Reactive Control Meets Runtime Verification: A Case Study of Navigation 373

which specifies a (robot) behavior to repeatedly visit the regions A, and C while

visiting B or D in-between. From this expression, we construct a runtime moni-
tor [7] that associates a Boolean state variable for each proposition and updates
them according to previous states and robot’s position at each time step. The
next sub-goal of the robot is determined according to the state vector of the
monitor.

(C; (BID);A)* (A;B;C)*

__@\ / 4

| |
A; (D;B;C)* (A;B; (CID))*

(

e
I

Fig. 4. Trajectories of robots G1-G4 assigned with missions M1-M4, respectively.
(Color figure online)

Finally we present our simulation results of four robots G1-G4 operated in
the same environment and controlled by the proposed architecture. We assign
the first robot G1 with the mission M1 and the rest G2—-G4 with missions M2-M4
below, respectively.

mission2 : (reach(A); reach(B); reach(C))* (M2)
mission3 : (reach(d); (reach(D); reach(B); reach(C))x* (M3)
mission4 : (reach(A); reach(B); (reach(C)|reach(D))=* (M4)

In Fig. 4, we separately show the simulated trajectories of the robot for a certain
duration that covers several loops as specified in the mission. The initial position
of the robot is marked by a yellow star. Robots get close to each other quite
frequently and evading maneuvers cause small variations among loops seen in
the figure. Overall we see that the robots successfully avoid each other and
static obstacles and obey regulations of the environment while performing their
formally-specified missions over achieving reasonable trajectories.

5 Conclusion

We presented an example and novel use of provably correct runtime monitors
to control a mobile robot subject to complex safety requirements and mission

374 D. Ulus and C. Belta

specifications in a dynamic environment. We embedded runtime monitors into
a layered reactive control architecture together with other simple and scalable
components to achieve a navigation solution that does not require strong assump-
tions. Our approach amounts to a more active use of runtime monitors beyond
checking assumptions of an offline motion planner at runtime [1,2,5]. We believe
the simplicity and breadth of runtime monitors would make them ideal to cover
many use cases and increase the level of assurance in robotic applications.

References

1. Medina Ayala, A.L., Andersson, S.B., Belta, C.: Temporal logic motion planning in
unknown environments. In: Intelligent Robots and Systems (IROS), pp. 5279-5284.
IEEE (2013)

2. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verifica-
tion for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp.
172-189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_11

3. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoid-
ance. IEEE Robot. Autom. Mag. 4(1), 23-33 (1997)

4. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Int. J. Softw. Tools
Technol. Transfer 6(2), 158-173 (2004)

5. Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.:
Iterative temporal planning in uncertain environments with partial satisfaction guar-
antees. IEEE Trans. Rob. 32(3), 583-599 (2016)

6. Ulus, D.: Online monitoring of metric temporal logic using sequential networks.
arXiv preprint arXiv:1901.00175 (2019)

7. Ulus, D.: Sequential circuits from regular expressions revisited. arXiv preprint
arXiv:1801.08979 (2018)

8. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11),
712-716 (1971)

https://doi.org/10.1007/978-3-319-67531-2_11
http://arxiv.org/abs/1901.00175
http://arxiv.org/abs/1801.08979

	Reactive Control Meets Runtime Verification: A Case Study of Navigation
	1 Introduction
	2 Environment, Robots, and Specifications
	3 Search for Safe Motion
	4 Navigate by Regular Expressions
	5 Conclusion
	References

