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ABSTRACT
Robot motion planning is central to real-world autonomous
applications, such as self-driving cars, persistence surveil-
lance, and robotic arm manipulation. One challenge in mo-
tion planning is generating control signals for nonlinear sys-
tems that result in obstacle free paths through dynamic en-
vironments. In this paper, we propose Control Barrier Func-
tion guided Rapidly-exploring Random Trees (CBF-RRT),
a sampling-based motion planning algorithm for continuous-
time nonlinear systems in dynamic environments. The algo-
rithm focuses on two objectives: efficiently generating feasi-
ble controls that steer the system toward a goal region, and
handling environments with dynamical obstacles in contin-
uous time. We formulate the control synthesis problem as
a Quadratic Program (QP) that enforces Control Barrier
Function (CBF) constraints to achieve obstacle avoidance.
Additionally, CBF-RRT does not require nearest neighbor
or explicit collision checks during sampling.

CCS Concepts
•Information systems→Mobile information process-
ing systems;

Keywords
Motion Planning; Sampling; Control

1. INTRODUCTION
Motion planning is a cornerstone of modern robotics, but it 
is still a challenging problem when non-trivial robot dynam-
ics are combined with input constraints and dynamic obsta-
cles. Control Barrier Functions(CBFs) have been shown to
be effective for feedback control in similar settings; however,
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they cannot be used alone for producing complete planners,
as they can get trapped in “local minima” created by obsta-
cles. CBFs can also become infeasible if there is no possible
control that allows the robot to remain safe (i.e., to avoid
collision). We look to overcome CBF limitations by gen-
erating and connecting many smaller, feasible trajectories
through sampling. This results in a complete CBF-based
planner that can find trajectories not considered by CBFs
alone.
Sampling-based motion planning is not a novel concept, how-
ever, much of the literature in this area tends to focus on
either high-level path planning, or lower level control and
trajectory planning. In this paper, we attempt to present a
unified approach that takes advantage of both collision free
and efficient trajectory planning, as well as efficient path
planning. Using CBFs developed in the formal methods
and controls community, we augment the classic rapidly ex-
ploring random trees algorithm to handle dynamic obstacles
and non-linear robot dynamics while also generating controls
that are guaranteed to produce safe, collision free, trajecto-
ries.

1.1 Related Work
This work draws in past work on both sampling-based algo-
rithms in the motion planning literature, as well as provably
correct control synthesis in the formal methods for robotics
community.
Motion planning in real-world applications often considers
high level path planning and low level control synthesis,
given safety requirements and dynamical constraints. Sam-
pling based motion planning algorithms, such as Probabilis-
tic Road Map [1], Rapidly-exploring Random Trees (RRT)
[2], and RRT*[3], have been widely explored and are efficient
strategies for high dimensional kinematic planning; however,
generally these algorithms assume that a low level controller
exists to generate collision free trajectories at run time. In
recent years, there has been considerable effort to try to
bridge the gap between path planning and control synthesis
by designing controller that steer the system in-between two
generated vertices, such as Kinodynamic RRT* [4], LQR-
RRT* [5] and its variants in [6] and [7], however these ap-
proaches are limited to linear systems and static environ-
ments. Our proposed CBF-RRT method takes a different
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approach compared to the work in [4], [5], and [6]. Instead
of first generating paths with a fixed number of vertices and
then treating control synthesis as a two point boundary value
problem (as in [5]), we generate both controls and paths“on-
the-fly” and work with nonlinear systems. Motion planning
in dynamical environments has been studied in [8] and [9],
but focuses on replanning when obstacles cause collisions.
Considerable work has been done on generating control strate-
gies for safety-critical systems using CBFs. A popular for-
mulation is to combine CBFs and Control Lyapunov Func-
tions (CLFs) in a Quadratic Program (QP) where the CBF
ensures safety and the CLF ensures stability. This approach
has been successfully applied to applications such as adap-
tive cruise control [10], bipedal robot walking [11], and swarm
control [12]. The QP based formulation works well when the
desired equilibrium point is well-defined and there exists a
feasible control sequence for the given problem. Under cer-
tain conditions, however, the QP may be infeasible due to
the environment or dynamical constraints. Work has also
been done, in [13], in designing a safe controller that follows
a pre-planned path, but does not include a path-planner
that explicitly explores the environment, and therefore also,
occassionally, leads to infeasibility in finding a solution.

Contributions:.
In this paper, we propose Control Barrier Function guided
Rapidly-exploring Random Trees, a motion planning algo-
rithm that uses sampling techniques to explore the state
space and a QP based controller with CBF constraints to
generate intermediate controls and trajectories between sam-
ples. From the sampling-based motion planning point of
view, this paper provides formal guarantees for collision free
continuous trajectories between samples. From a formal
methods in robotics point of view, this paper offers a partial
solution to infeasibility in finding a solution in CBF/CLF
QP based controller formulations. The proposed framework
guarantees safety, handles obstacles with known dynamics,
and its internal control synthesis can be utilized as the low
level controller at run-time.
This paper is organized as follows: preliminary information
is provided in Section 2; the problem statement and pro-
posed algorithm are presented in Section 3 and Section 4,
respectively; a differential drive model is considered in Sec-
tion 5 followed by simulations in Section 6; Conclusions are
given in Section 7.

2. PRELIMINARIES

2.1 Notation
Let Rn be the set of real numbers in n dimensions. The
Lie derivative of a smooth function h(x(t)) along dynam-

ics ẋ(t) = f(x(t)) is denoted as £fh(x) := ∂h(x(t))
∂x(t)

f(x(t)).

Given a continuously differentiable function h : Rn 󰀁→ R,
we denote hrb as its rb-th derivative with respect to time
t. A continuous function α : (−b, a) 󰀁→ (−∞,∞), for some
a, b > 0, belongs to the extended class K if α is strictly in-
creasing and α(0) = 0. The set difference between set A and
set B is denoted as A\B.

2.2 Dynamics
We consider a motion planing problem for a continuous-time

control system

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ Rn is the state and u ∈ U ⊂ Rm is the
control input, where U is a set of admissible controls for
system (1). The functions f(x) and g(x) are assumed to
be locally Lipschitz continuous. The initial state is denoted
as xinit := x(t0) ∈ X and the goal region is defined as
Xgoal ⊂ X . Obstacles are assumed to be non-stationary
with known dynamics and move according to the equation

ẋobs = fobs(xobs), (2)

where xobs ∈ Xobs ⊂ X is the state variable for the obstacles
(e.g., center of mass). The function fobs is again assumed to
be locally Lipschtiz continuous.

Remark 1. For special cases where the obstacle dynam-
ics are unknown, we could approximate their dynamics with
techniques, such as Gaussian Process (GP)[14] or online
Linear Regression[15]. For simplicity, in this paper, we as-
sume that all obstacle dynamics are known.

2.3 Exponential Control Barrier Functions
In traditional path planning approaches, obstacle avoidance
is often enforced by a collision check along segments or re-
gions of the path. To create a more complete and prov-
ably safe trajectory, we instead formulate obstacle avoidance
as remaining within a safety set defined by Control Barrier
Functions (CBFs, [10]) and their extensions for higher rel-
ative degree, Exponential CBFs [16]. Given a continuously
differentiable function h : Rn 󰀁→ R, the safety set C is de-
fined as

C = {x ∈ Rn|h(x) ≥ 0}.
∂C = {x ∈ Rn|h(x) = 0},

Int(C) = {x ∈ Rn|h(x) > 0}
(3)

where ∂C is the boundary and Int(C) is the interior. The
set C is called forward invariant for system (1) if x0 ∈ C
implies x(t) ∈ C for all t.
For systems with relative degree rb, we define a traverse
variable as

ξb(x) =
󰀅
h(x), ḣ(x), . . . , h(rb)(x)

󰀆T

=
󰀅
h(x),£fh(x), . . . ,£fh

rb(x)
󰀆T

,

and formulate a virtual system with input-output lineariza-
tion [17]:

ξ̇b(x) = Abξb(x) +Bbµ, (4)

hl(x) = Cbξb(x),

where

Ab =

󰀵

󰀹󰀹󰀷

0 1 · · 0
· · · · ·
0 0 0 · 1
0 0 0 · 0

󰀶

󰀺󰀺󰀸 , Bb =

󰀵

󰀹󰀹󰀹󰀷

0
...
0
1

󰀶

󰀺󰀺󰀺󰀸
,

Cb = [1 . . . 0] ,

and µ = (£g£
rb−1
f h(x))−1(µ−£

rb
f h(x)) is the input-output

linearized control.
Definition 1. Consider the dynamical system in (1) and

the safety set C defined in (3). A continuously differentiable
function h(x) with relative degree rb ≥ 1 is an Exponential
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Control Barrier Function (ECBF) [16] if there exists Kb ∈
R1×rb , such that

inf
u∈U

[£
rb
f h(x) +£g£

rb−1
f h(x)u+Kbξb(x)] ≥ 0, ∀x ∈ Int(C),

(5)
where the row vector Kb is selected such that the closed-loop
matrix Ab −BbKb for (4) is stable.

Theorem 1. Given the system (1), and the safety set C
defined in (3), if there exists an ECBF h(x), then the system
is forward invariant in C [16].

Remark 2. There exist a more general notion of Higher
Order Control Barrier Function (HOCBF) [18], of which
ECBF is a special case. For the purposes of this paper, we
only need ECBFs, although the use of HOCBFs could lead
to improved performance.

2.4 Rapidly-exploring Random Trees (RRT)
We use T = (V, E) to denote a tree with a set of vertices
V ⊆ X and a set of edges E . The classic Rapidly-exploring
Random Trees algorithm (RRT, [2]), builds a tree T where
each vertex v ∈ V is associated to a full state v = x ∈ Rn,
and edges follow the system dynamics (1). The algorithm
needs the following essential components:

• State Space and Goal Region: A configuration
space X , such that x ∈ X , and a goal region Xgoal ⊂ X .

• Collision Check: A function CollisionCheck(x) that
detects if a state trajectory x violates any collision con-
straint.

• Metric: A function d : X × X → [0,∞) that returns
the distance between two vertices within X .

• Nearest Neighbor: A function NearestNeighbor :
(T , xsample) 󰀁→ xnn which utilizes the distance func-
tion d to find the vertex xnn in T that is closest to
xsample.

• Inputs: A set of admissible controls U , such that u ∈
U , for steering the state x.

• Steer: As shown in Figure 1, given a sampled vertex
xsample and nearest vertex xnn, Steer(xnn, xsample)
guides the system from xnn to xsample with control u
while performing collision checks. The function ter-
minates after the trajectory progresses some fixed dis-
tance and returns false if no trajectory is possible.

The RRT algorithm is summarized in Algorithm 1 and Al-
gorithm 2.

Algorithm 1 RRT

T = (V, E), V ← {xinit}; E ← ∅ ;
while x ∕∈ Xgoal do

xsample ← RandomState(V)
T ← Extend(T ,xsample)

return T

Algorithm 2 Extend(T ,xsample)

xnn ← NearestNeighbor(T , xsample);
if Steer(x,xnn, xnew, unew) then

V.AddVertex(xnew)
E .AddEdge(xnew, unew, xnn)
if xnew = xsample then

return (V, E)
else

return T
return Trapped

Figure 1: Steer function in classic RRT

There are three possible outcomes from the Steer function:
Reached indicates that xnew = xsample can be reached under
the dynamical and obstacle constraints, Advanced indicates
that 󰀂xsample−xnew󰀂 ≤ δd, where δd is a positive constant,
Trapped indicates that the function cannot find a feasible
control u to steer the system. The Steer function is demon-
strated in Figure 1.

3. PROBLEM STATEMENT
Problem 1. Consider a nonlinear system in the form of

(1), with initial state xinit ∈ Xinit ⊂ X ⊂ Rn, where Xinit is
an initial obstacle free set, and a bounded goal region Xgoal,
generate feasible control inputs u(t) that steer the system to
Xgoal while avoiding dynamical obstacles.
To approach the problem, we combine both obstacle dy-
namics and system dynamics into a composite system. By
treating the obstacles’ state as part of the composite system,
we can effectively construct the CBF constraints for the QP
controller.

4. CBF-RRT
The CBF-RRT algorithm is different from other RRT vari-
ants in that there is no explicit collision or nearest neighbor
checks. Instead, we introduce the notion of safe steering
that encodes collision avoidance as staying within the safety
set (3). The nearest neighbor check is implicitly handled by
sampling the vertices in V.
Before we formally introduce the algorithm, we define the
following components:

• State Space: A topological space X ⊂ Rn, and Xgoal,
Xobs ⊂ X .

• Inputs: A set of admissible controls U for steering the
state x.

• Safe Steering: A function that generates both safe
controls and trajectories in a time interval th, given
the system dynamics (1) and obstacle dynamics (2).
More details are introduced in Section 4.2.

In general, the vertices are sampled points of the state space,
V ⊆ X and we assume Xgoal\Xobs. To account for the time-
varying obstacles, the vertices need to store an additional
parameter that determines when, in time, the vertices are
safe. In other words V ⊆ X × R where the additional pa-
rameter is time and an element v = (x, t) ∈ V. We use
T = (V ⊆ X × R, E).
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4.1 Sampling

4.1.1 Vertices
The function VerticesSample : vs ∈ V samples, with a de-
sired probability distribution, pv(V), on the existing vertices
of the tree T . By varying the probability distributions, the
behavior of the tree expansion, as well as convergence speed,
will be drastically different.

4.1.2 State Space
Depending on the problem, some state variables may not
play an essential role in the task requirements and/or sys-
tem dynamical constraints. We denote these variables as free
state variables that can be arbitrarily chosen to increase the
probability of finding a path that satisfies the dynamics and
safety constraints. We define function StateSample : vs 󰀁→
ve that updates the free state variables of a given vertex with
a probability distribution. We denote this probability dis-
tribution as pstate(x) and define ve as the expanding vertex.
For example, if the task is to steer a nonholonomic first-
order planar robot, such as a unicycle, from one position to
another and orientation does not matter. Then, the vertices
only need to contain information relevant to the position of
the robot, i.e. V ∈ R2 × R ⊂ R3 × R.

4.1.3 Control Reference
If no free states exist in the system dynamics, the uref value
must be sampled from a distribution puref in order to main-
tain the probabilistic nature of CBF-RRT. In this case, we
define a function ReferenceSample : uref ∈ U that updates
the uref for the chosen sample from puref .

4.2 Safe Steering
We define a function SafeSteer(v0, th, uref ) that contains
two components: controls synthesis and collision-free trajec-
tory generation. Given an initial vertex v0 which includes an
initial state x0 and time element t0, a fixed time horizon th,
a control reference uref , obstacle dynamics (2) and system
dynamics (1), SafeSteer solves a sequence of QPs (Section
4.4) with CBF constraints and generate a sequence of con-
trol inputs u(t). The control inputs generate a collision-free
trajectory to xnew at time t0 + th which is added to the tree
T as a new vertex.

Remark 3. The control reference uref determines how
the robot explores the space and the QP ensures the robot’s
safety while doing so by modifying uref as necessary. For
example, if the reference command uref is defined as ”go
forward in the body-fixed frame”, then the QP’s job is to
steer the robot away from obstacles when necessary. If there
are no obstacles, the robot should move in a straight line.

4.3 Goal Check
Given a desired goal xgoal, we define a goal region Xgoal =
{y ∈ Rn : d(y, xgoal) ≤ 󰂃}, where 󰂃 is a positive constant
chosen such that Xgoal is obstacle free. If the trajectory
x(t) ∈ Xgoal, then the algorithm terminates and a path is
found. Otherwise, the algorithm continues.

(a)

(b)

(c)

(d)

Figure 2: Illustration of CBF-RRT for a system with states
x = [x1, x2, θ]

T where θ is a free variable: The algorithm
picks a random vertex within tree T and sets it as the sam-
pled vertex vs. Next, it performs another sampling on the
state variable θ under state distribution pstate. The steering
function then generates a sequence of controls u to steer the
system while avoiding collisions. (a) Selection of a random
vertex in V. (b) Selection of random state θ. (c) Safe steer-
ing trajectory when no nearby obstacle present. (d) Safe
steering trajectory with dynamic obstacle present.

4.4 Quadratic Program Formulation
The QP based controller takes in a reference control uref ,
current state of the system x(t) and obstacle xobs(t) as in-
puts and finds a feasible control u(t) point-wise in time that
tries to follow uref while maintain safety, as shown in Figure
2. Given a safety set hi(x) and a system with relative degree
rb, we define the i-th CBF constraint as

ζi(x) = £
rb
f hi(x) +£g£

rb−1
f hi(x)u+Kb,iξb,i(x) ≥ 0.

Additional linear constraints (with respect to u) may be
considered, such as control bounds. These requirements may
be formulated as a QP as follows:

min
u∈U

󰀂u− uref󰀂2

s.t. ζi(x) ≥ 0, i = 1, ..., Nobs

u ≤ u ≤ u,

(6)

where u, u are the lower and upper control bounds, respec-
tively. The CBF constraint ζi is linear in terms of decision
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variable u and Nobs is the total number of obstacles.

Algorithm 3 CBF-RRT

1: V ← {(xinit, tinit)}; E ← ∅ ; ⊲ Initialize first vertex to
initial state.

2: Xgoal ⊂ X ⊲ Define goal region.
3: while x ∕∈ Xgoal do
4: vs ← VerticesSample(V, pv) ⊲ Sample a vertex in

V
5: ve ← StateSample(vs, pstate) ⊲ Sample the state at

vertex xs (i.e. θ)
6: uref ← ReferenceSample(puref ) ⊲ Sample reference

control if needed
7: utraj , xtraj , xnew, tnew ← SafeSteer(ve, th,uref ) ⊲

Solve CBF QP
8: if xnew ∕= ∅ then ⊲ If QP was feasible
9: V ← (xnew, tnew),E ← xtraj ⊲ Update the tree

return T = (V, E),utraj

Algorithm 4 SafeSteer

Given ve, th, uref

2: ζi ← i-th CBF constraint, ∀i;
utraj , xtraj , xnew, tnew ← Integra-

tor(xe, te, th, QPcontroller(x(t), xobs(t), uref ));
4: return utraj , xtraj , xnew, tnew

5. NUMERICAL EXAMPLES
In this section, we consider the motion planning problem
of steering a planar robot from an initial state xinit to a
goal position that is independent of orientation. In partic-
ular, the goal region Xgoal is defined by xgoal and 󰂃 where
xgoal = [x1,goal, x2,goal, θgoal]

T and θgoal is arbitrary. Thus,
the motion planning problem is solved in the work space
Xwork ∈ R2.

5.1 Dynamical System
Consider a unicycle model for a two-wheeled differential
drive robot

ẋ1 = v cos(θ), (7)

ẋ2 = v sin(θ),

θ̇ = ω,

where the state x = [x1, x2, θ]
T ∈ R3 corresponds to the

location (x1, x2) in work space Xwork ⊂ R2 and heading
θ with respect to the inertial frame. The control input
u = [v,ω]T ∈ R2 consists of the translational and angu-
lar velocity that are bounded, respectively. The equations
of motion (7) can be written in control affine form as

󰀵

󰀷
ẋ1

ẋ2

θ̇

󰀶

󰀸 =

󰀵

󰀷
cos(θ)
sin(θ)

0

󰀶

󰀸 v +

󰀵

󰀷
0
0
1

󰀶

󰀸ω. (8)

5.2 Safety Sets
We consider rigid body obstacles and model them as the
union of circles with centroids (xobs,i,1(t), xobs,i,2(t)) and
fixed radii robs,i where each obstacle is inscribed by the union
of their respective circles. We denote the i-th safety set as

Ci = {x ∈ R2 : hi(x) ≥ 0}, (9)

where

hi(x) = (x1(t)− xobs,i,1(t))
2 + (x2(t)− xobs,i,2(t))

2 − r2obs,i.
(10)

Each circle has the following dynamics

ẋobs,i,1 = vobs,i,1, (11)

ẋobs,i,2 = vobs,i,2, ∀i.

The safe set of the robot is given as the intersection of all
the safe sets for the circles

Crobot =

Nobs󰁟

i=1

Ci. (12)

The i-th ECBF constraint is

ζi(x) = £2
fhi(x) +£g£fhi(x)u+ k1hi(x) + k2£fhi(x) ≥ 0,

(13)

∀x ∈ Int(Ci),

where

hi(x) = (x1 − xobs,i,1)
2 + (x2 − xobs,i,2)

2 − r2

(14)

£fhi(x) = 2v(x1 − xobs,i,1) cos θ + 2v(x2 − xobs,i,2) sin θ

−2(x1 − xobs,i,1)vobs,i,1 − 2(x2 − xobs,i,2)vobs,i,2,

and k1, k2 are positive constants that are selected appro-
priately to ensure forward invariance, as mentioned in [16].
The resultant ECBF constraint is

ζi(x) = 2x1v
2 cos2 θ + 2x2v

2 sin2 θ (15)

+(2(x2 − xobs,2) cos θ − 2(x1 − xobs,1) sin θ)ω

+2v2obs,i,1 + 2v2obs,i,2 + k1h(x) + k2£fh(x) ≥ 0.

Remark 4. The inequality (15) is linear with respect to
ω but not v, therefore it cannot be add directly into the QP as
a linear constraint. This is due to the mixed-relative degree
of the control inputs. To overcome this limitation, we set
the translational velocity v = c ∈ R, which becomes part of
the system dynamics function f(x) in (1).

5.3 Sampling Distributions
Vertex Sampling: Given a set of vertices V in T , we define
a discrete uniform distribution over all vertices

pv =
1

Nv
, (16)

where Nv is the total number of vertices in V. Therefore,
each vertex has equal probability to be selected as an ex-
panding vertex.
State Sampling: Given the state of the sampled vertex
[x1,s, x2,s, θfree]

T , we first calculate the desired heading an-
gle θgoal toward xgoal by

θgoal = arctan

󰀕
x2,goal − x2,e

x1,goal − x1,e

󰀖

We then define a Gaussian distribution for the state θfree

pstate(θfree) =
1√
2πσ2

e
−

(θfree−θgoal)
2

2σ2 , (17)

where σ2 is the variance and we set θgoal as the mean.
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6. SIMULATIONS
For simulations, the control inputs are v ∈ [−1, 1] and ω ∈
[−4.25, 4.25]. We then add (15) as linear constraints in the
QP (6) with ω as the only decision variable and v = 1 (see
Remark 4). We choose ωref = 0, i.e., the system minimally
change its heading direction θ. The combination of (v,ωref )
is chosen such that the robot moves in straight lines as it
explores the space. All experiments are performed on a desk-
top computer with a i7-8700K CPU with the Gurobi 8.1.1
[19] solver.

6.1 Example 1: Static Environment
In the first example, we consider an environment withNobs =
3 static obstacles, i.e., vobs,i,1 = vobs,i,2 = 0, ∀i = 1, ..., Nobs,
which implies xobs,i,1 and xobs,i,2 are constants in (10). The
corresponding ECBF is

ζi(x) = 2x1v
2 cos2(θ) + 2x2v

2 sin2(θ) + k1hi(x)

+k2(2x1v cos(θ) + 2x2v sin(θ)) + [−2v(x1 − xobs,i,1) sin(θ)+

2v(x2 − xobs,i,2) cos(θ)]w ≥ 0.

The initial state is xinit = [−0.5,−0.5, 1]T and the goal state
is xgoal = [2, 2, ·]T . We define three obstacles with their
centroids locate at (0.3, 1.2), (1.0, 0.5), (1.7,−0.5) with a
radius ri = 0.2, ∀i. The hyper parameters in Table 1 include
ECBF coefficients k1, k2, variance σ2 for state distribution
pstate, radius of the goal region 󰂃 and time horizon th.

Figure 3: Example 1: CBF-RRT Motion Planning

Table 1: Hyper Parameters for Example 1

Case k1 k2 σ2 󰂃 th v Run Time
1 2.0 4.0 0.2 0.15 0.5 1.0 20.37s
2 2.0 4.0 0.6 0.15 0.5 1.0 1.81s

In Figure 3, the generated tree curves around the obstacle
as the SafeSteer function ensures the generated trajectory
never enter the obstacle regions. Note case 2 has a higher
variance (σ2 = 0.6) which result in more exploration in the
work space before finding a path to Xgoal.

6.2 Example 2: Dynamical Environment
In this example, without the loss of generality, we consider
multiple obstacles with constant velocity vobs,i,1, vobs,i,2 for
the i-th obstacle. We formulate a composite system that
includes obstacles dynamics (11) as the following

󰀵

󰀹󰀹󰀹󰀷

ẋ1

ẋ2

θ̇
ẋobs,i,1

ẋobs,i,2

󰀶

󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

v cos(θ)
v sin(θ)

0
vobs,i,1
vobs,i,2

󰀶

󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀹󰀷

0
0
1
·
0

󰀶

󰀺󰀺󰀺󰀸
ω, (18)

i = 1, ..., 4. (19)

Remark 5. The composite system (18) can be easily ex-
tended to multi-agents path planning problems. In this ex-
ample, we only consider path planning problem for a single
agent.
The four obstacles are initially located on the edge of the
workspace and gradually move toward the center. We set
vobs,1,1 = vobs,2,1 = 0.08,vobs,1,2 = vobs,2,2 = 0.3, vobs,3,1 =
vobs,4,1 = −0.08,vobs,3,2 = vobs,4,2 = −0.3. The additional
hyper-parameters can be found in Table 2. The generated
tree can be found in Figure 4 and the simulation snapshots
are in Figure 5.

Figure 4: For Example 2, the figure shows the generated tree
from CBF-RRT under dynamical environment with 4 mov-
ing obstacles. The obstacles are not shown here for easier
visuals

Table 2: Hyper Parameters for Example 2

k1 k2 σ2 󰂃 th v Run Time
1.0 1.9 1.0 0.15 0.5 1.0 32.4s
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(a)

(b)

(c)

(d)

Figure 5: CBF-RRT snapshots for multi-dynamical obsta-
cles (σ2 = 1.0): The plots from (a) to (d) demonstrate how
the robot (blue dot) progress as the obstacles (red circles)
crosses its path. The SafeSteer function steers the robot
away from the obstacle such that it can reach the goal with-
out collision. Video:URL link

6.3 Comparison with RRT and RRT*
One of the major advantages of CBF-RRT is to guarantee
of collision free trajectory generation in continuous time. In
RRT and RRT* path planning, an end-point collision check
function typically only checks if the end vertex xnew is within
an obstacle region. While it is computationally efficient, the
generated trajectories have the potential to collide with in-
termediary obstacles that are smaller than the chosen step
size δd (Fig. 1). We compare our proposed CBF-RRT al-
gorithm with both RRT and RRT* in the same static envi-
ronment from Example 1 and Fig. 6 highlights how trajec-
tories have the potential to collide with the obstacles when
δd is chosen to be too large. CBF-RRT however does not
suffer from this issue since it considers continuous trajecto-
ries and has no such explicit collision check. Table 3 shows
the run time and number of vertices comparisons between
the CBF-RRT, RRT, and RRT* algorithms. CBF-RRT pre-
forms between RRT and RRT* in terms of both computation
time and number of vertices generated. This illustrates that
CBF-RRT is able to guarantee collision free trajectories for
non-linear dynamics without excessive increases in compu-
tation time over less-safe RRT and RRT*. Furthermore, we
expect CBF-RRT to outperform RRT and RRT* in highly
complex (crowded) environments because it does not need
to perform a collision check explicitly.

Table 3: Comparison of CBF-RRT, RRT, and RRT*

Alg. Step Size Run Time (s) Number of Vertices
CBF-RRT 0.25s 2.98 496

RRT 0.25m 0.00125 39
RRT* 0.25m 2.109 488

CBF-RRT 1s 0.281 26
RRT 1m 0.00027 9
RRT* 1m 1.480 494

7. CONCLUSION AND FUTURE WORK
In this paper we present CBF-RRT, a motion planning al-
gorithm that successfully generates collision-free trajectories
and control strategies for a nonlinear system under both
static and dynamic environments. In future work, we will
further increase the richness of the mission specifications by
adding temporal logic based constraints. Second, we will
further improve the current algorithm with rewiring tech-
nique that is similar to RRT* and perform theoretical anal-
ysis. Third, we would like to extend the current algorithm
to handle multi-agent motion planning.
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Figure 6: Comparison between CBF-RRT, RRT and RRT* with End-point collision check. (a) CBF-RRT with th = 0.25s.
(b) RRT with δd = 0.25m. (c) RRT* with δd = 0.25m. (d) CBF-RRT with th = 1.00s. (e) RRT with δd = 1.00m. (f) RRT*
with δd = 1.00m.
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