
ScRATCHS: Scalable and Robust
Algorithms for Task-Based Coordination

from High-Level Specifications

Austin M. Jones1, Kevin Leahy1(B), Cristian Vasile2, Sadra Sadraddini2,
Zachary Serlin1,3, Roberto Tron3, and Calin Belta3

1 MIT Lincoln Laboratory, Lexington, MA, USA
kevin.leahy@ll.mit.edu

2 Massachusetts Institute of Technology, Cambridge, MA, USA
3 Boston University, Boston, MA, USA

Abstract. Existing approaches for coordinating teams of heterogeneous
agents either consider small numbers of agents, are application-specific
solutions, or do not adequately address requirements, e.g., deadlines or
inter-task dependencies, common to real-world applications. We develop
a framework called Scalable and Robust Algorithms for Task-based Coor-
dination from High-level Specifications (ScRATCHS) to coordinate such
teams. We define a specification language, called capability temporal
logic (CaTL), to describe rich, temporal properties involving tasks requir-
ing the participation of multiple agents with multiple capabilities, e.g.,
sensors or end effectors. An example specification is “Ensure at least
10 airborne cameras and 3 airborne lidars are surveying Site A for at
least 15 min simultaneously during every hour-long period. Make sure
that 5 cameras are always observing Site B. Send 10 lidars to Site B
within 3 h of deployment and remain there until 4 ground vehicles with
infrared sensors arrive 2 h later.” Arbitrary missions and team dynam-
ics are jointly encoded as constraints in a mixed integer linear program
(MILP), which can be solved efficiently using commercial off-the-shelf
solvers. ScRATCHS also enables optimization of the resulting plan to be
maximally robust to agent attrition at the penalty of increased compu-
tation time. The flexible specification language, fast solution time, and
optional robustness of ScRATCHS provide a first step towards a multi-
purpose on-the-fly planning tool for a supervisor tasking large teams with

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opin-
ions, findings, conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Under Secretary of Defense
for Research and Engineering.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-030-95459-8 14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Asfour et al. (Eds.): ISRR 2019, SPAR 20, pp. 224–241, 2022.
https://doi.org/10.1007/978-3-030-95459-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95459-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-95459-8_14
https://doi.org/10.1007/978-3-030-95459-8_14

ScRATCHS 225

multiple capabilities enacting missions with multiple tasks. We validate
our approach using randomized computational experiments and via a
hardware demonstration.

1 Introduction

One of the main challenges of multi-agent systems is the deployment of teams of
heterogeneous agents that can work together to complete a task that cannot be
performed by a single agent nor by a team of homogeneous agents. An example
of such a capability is coordination between airborne robots with downward-
facing visual and infrared cameras and ground robots with manipulators capable
of moving rubble to find survivors in an urban environment after a natural
disaster. The problems of planning and coordination (PAC) for such teams is
very complex, as heterogeneity prohibits the arbitrary exchange of one agent for
another. It is challenging to develop scalable algorithms for these teams, as more
distinct possibilities must be searched when generating a team plan. It is also
difficult to develop algorithms that are robust to agent attrition. That is, the
inability to re-task any arbitrary agent to assume the responsibility of an agent
that has dropped out of the team hampers the ability of a heterogeneous team
to “self-reorganize”.

Most work in general PAC algorithms for multi-agent systems assumes homo-
geneity of agent capabilities to avoid these complications [6,28]. Typically, PAC
algorithms for heterogeneous teams are ad hoc solutions that depend heavily
on subject matter expertise and are specialized to a single family of capabili-
ties/platforms and a single, unique mission [14,29], or do not consider temporal
deployment requirements [4,22]. In terms of the multi-robot task allocation tax-
onomy of [16], this work fits best in the single-task, multi-robot, time-extended
assignment (ST-MR-TA) category.

In this work, we introduce a framework called Scalable and Robust Algo-
rithms for Task-based Coordination from High-level Specifications (ScRATCHS)
in which a human supervisor can task a team of heterogeneous agents on-the-fly
by specifying a high-level mission. Our framework applies to arbitrary distribu-
tions of capabilities among agents and to arbitrary missions expressed as tem-
poral logic (TL) specifications. ScRATCHS removes the need to design custom
high-level planners for every new possible combination of robot platforms that
can work in a team and allows a supervisor flexibility to accomplish new missions
with the available team of robots.

We use tools from formal methods to develop PAC algorithms for agents
with heterogeneous capabilities that are scalable with the number of agents and
are robust to agent attrition. We achieve scalability by defining and solving
mixed integer linear programs (MILPs) that are equivalent to the defined PAC
problems. Advances in solution techniques make it possible to solve MILPs with
hundreds of thousands of variables and constraints with limited computation
time [13,20,30]. We achieve robustness by defining and directly optimizing a
measure of robustness to attrition that can be computed by mixed integer linear

226 A. M. Jones et al.

constraints derived from the TL specifications. This approach is complete (up to
the precision of the used numerical solver), meaning that if a solution exists, it
will be found. Further, by using such an optimization-based approach, we can
check very quickly for some kinds of infeasibility, i.e., if the linear relaxation of
the MILP is found to be infeasible, the MILP is also infeasible.

ScRATCHS is illustrated in Fig. 1. We are given a team of agents whose
capabilities, e.g., sensors or end effectors, are known a priori. The agents work in
a known shared environment partitioned into regions, labeled with the tasks that
may be completed in there. An operator overseeing the team of agents has access
to a library of tasks that the agents can perform. A task description consists of
the labels of the regions where the task must be performed, the required number
of agents with each type of capability that are required to perform the task, and
the amount of time required for the agents to complete the task. From these
tasks, an operator uses our specification language, called capability temporal
logic (CaTL) to generate a specification that gives absolute or relative timing
of task completion, repetition frequencies, and task inter-dependencies such as
sequencing or synchronization. Our algorithm then encodes the dynamics of the
agents moving throughout the environment, the specification, and the selected
measure of robustness into a MILP. The resulting plan from the MILP is handed
to a motion planner to generate a collision-free motion plan for the team.

Fig. 1. Schematic overview of ScRATCHS.

Our contributions to PAC for teams of agents with heterogeneous capabilities
are:

– The formulation of a specification language called capability temporal logic
(CaTL) that can be used to specify behaviors for teams of agents with het-
erogeneous capabilities with interval-time semantics,

– The encoding of agents moving in a shared environment subject to a CaTL
specification as a MILP,

– A notion of robustness measure to optimize a plan’s tolerance to agent attri-
tion,

– A complete planning and deployment framework that goes from symbolic
level specifications all the way down to motion plans, and

– Extensive computation results that show the performance of our approach
and experimental trials involving large teams of heterogeneous robots.

ScRATCHS 227

In our approach, we formulate missions as high-level specifications using TL.
Temporal logics have seen success for single agents systems [1,2] and, increas-
ingly, for multi-agent systems [7,9,10,21], including for heterogeneous teams [27].
Much of this work uses automata to capture these specifications, which provide
a useful framework for reasoning about specifications, but can lead to issues of
computational complexity and scalability. In [3,17], the authors use automata-
based methods to determine independent sub-specifications for individual agents,
whose interleaved behavior is guaranteed to satisfy the global specification. We
avoid the computational complexity of [3,17] by describing the joint state of the
team as numbers of agents with each capability present in each region [26] at a
given time rather than as a product of automata.

The work most related to ours have used MILPs to generate plans for teams
of agents under TL specifications [11,12,26]. In contrast to [12], which focuses on
time-abstract specifications, the logic we define and consider in this paper, Capa-
bility Temporal Logic (CaTL), uses interval-time semantics. CaTL is a fragment
of signal temporal logic (STL) [19] and thus contains concrete deadlines and
other timing requirements. The work in [11] also uses concrete timing require-
ments, but focuses on the density of homogeneous agents present throughout the
environment. Likewise, the authors of [26] propose a method for coordinating
heterogeneous teams, but use time-abstract semantics. We, on the other hand,
use similar specifications on the number of agents that must perform a particular
task, while also specifying precise timing requirements. Additionally, the named
papers consider minimizing total travel time, which can lead to a solution that
needlessly fails when individuals fail or are early/late. Our approach maximizes
tolerance of the plan to agent attrition.

2 Models and Specifications

In this section, we define models for the kinds of teams we want to coordinate and
a specification language, CaTL, for describing behaviors of these systems. We
are motivated by the following hypothetical example from precision agriculture.

Example 1. Consider a large farm that grows diverse crops in spatially separated
locations as illustrated in Fig. 2. Each colored region corresponds to a different
type of crop, with the exception of the red regions that correspond to areas which
the robots cannot traverse, e.g., areas where heavy equipment are in operation
or where the terrain is too rough for the robots to traverse. To aid in monitoring
these crops, a fleet of ground based robots with different sensing modalities has
been deployed to keep track of plant health. The fleet as a whole has visual(Vis),
infrared (IR), ultraviolet (UV), and soil moisture (Mo) sensors. Every robot in
the fleet has at most two sensors and the assignment of sensors to robot is fixed
a priori. Each of the crops in the field has distinct monitoring requirements. The
tasks that the team of robots must perform during a 24 h deployment are listed
in Table 1.

228 A. M. Jones et al.

Table 1. List of precision agriculture tasks

1. All robots must avoid the red obstacle regions at all times

2. Within 10 h of deployment, two visual and two IR sensors must remain within
each green crop region at the same time for at least 1/2 h

3. Half hour soil moisture readings must be made in each blue crop region every 10 h

4. Within 4 and 12 h after deployment, two UV and two visual sensors must be in
the yellow crop region for a half hour hours

5. Within 1 and 9 h of deployment and within 10 and 15 h of deployment, two visual
sensors must be in each orange region and remain there for 1 h

2.1 Environment

Definition 1. The Environment is given by a tuple Env = (Q,E,W,AP,L)
where:

– Q is a finite set of states that correspond to regions of a workspace
– E ⊆ Q × Q is a set of edges such that (q1, q2) ∈ E iff an agent in the

environment can traverse from the region associated with q1 to the region
associated with q2 without passing through any other region

– W : E → R is an edge weight such that W ((q1, q2)) is the maximum amount
of time required for an agent to traverse q1 before entering q2.

– AP is a set of atomic propositions that define what types of tasks may be
performed in the environment

– L : Q → 2AP is a mapping that labels each state in the environment according
to which tasks may be performed in that region

When constructing an environment from a partitioned workspace, forbidden
regions are omitted from Q and transitions to/from those regions are omitted
from E.

Example 1 (Continued). The set of crops shown in Fig. 2(a) leads to the environ-
ment model shown in Fig. 2(b). There are 8 regions {q1, . . . q8}. An edge exists
between regions if the two regions share a facet or vertex, i.e., if they are con-
nected geographically. The weight between regions is the transit time required to
travel from the point farthest away from the shared facet or vertex to the shared
facet or vertex. The set of propositions {πgreen, πblue, πorange . . .} in the model
corresponds to the types of regions (colored crops/obstacles) and the labeling
function applies the labels to the appropriate regions.

2.2 Agents

Let Cap be a finite set of capabilities that an agent can have and let J be a
finite index set representing all agents.

Definition 2. An Agent j ∈ J is given by a tuple Aj = (q0,j , Capj) where q0,j ∈
Q is the initial location of the agent in the shared environment and Capj ⊆ Cap
is a finite set of capabilities.

ScRATCHS 229

Example 1 (Continued). The set of capabilities is given by Cap =
{V is, UV, IR,Mo}. Agent A1 located in the upper left hand corner of Fig. 2
is described by A1 = (q1, {UV,Mo})

Definition 3. An input signal for an agent j is a mapping uj : R → E where
uj(t) = e indicates that agent j starts traversing edge e at time t. Each input
signal has the properties uj(t) = e where e = (q1, q2) ⇒ Aj is in state q1 at time
t and uj(t) = e ⇒ uj(τ) = ∅, ∀τ ∈ (t, t + W (e)). The input signal uj induces
a trajectory of agent Aj , denoted sj : R → Q ∪ E, such that sj(0) = q0,j and
uj(t) = (q1, q2) ⇒ sj(τ) = (q1, q2), ∀τ ∈ [t, t + W (e)) ∧ sj(t + W (e)) = q2.

Definition 4. Given a team of agents {Aj}j∈J , let G ⊆ 2Cap be the set of unique
combinations of capabilities present in the collection {Capj}j∈J . The team tra-
jectory is a mapping sJ : R → Z

+,|J|×Q that maps each time t to the team state
sJ(t) = [nQ,G(t), nE,G(t)] ∈ Z

+,|G|(|Q|+|E|). The vector nQ,G = [nq,g(t)]q∈Q,g∈G

is defined such that

nq,g(t) =
∑

j∈J

I(sj(t) = q)I(Capj = g), (1)

where I is the indicator function. That is, nq,g is the number of agents with
capability set g in state q. The vector nE,G(t) = [ne,g]e∈E,g∈G is defined such
that

ne,g(t) =
∑

j∈J

I(sj(t) = e)I(g = Capj) (2)

i.e., ne,g is the number of agents with capability set g that are traversing edge e.

That is, the team trajectory corresponds to how many agents with each type
of capability are present in each region and traversing along each edge at each
time.

{IR,UV } {V is, UV }

{V is,Mo} {V is, IR} {V is, IR} {V is, IR}

{V is, UV }
{V is,Mo}

{UV,Mo} {UV,Mo} {IR,UV }

)b()a(

Fig. 2. (a) Schematic of the precision agriculture motion coordination problem. Region
colors correspond to crop types. Discs are robots with their associated capabilities
listed. Capabilities include: ultraviolet sensing (UV), moisture sensing (Mo), infrared
sensing (IR), and vision (Vis). The team of robots are used for crop monitoring tasks,
such as “Within 3 h of deployment, two visual and two IR sensors must remain within
each green crop region at the same time for at least 1 h.” (b) Associated environment.

230 A. M. Jones et al.

3 Capability Temporal Logic (CaTL)

Here, we define the syntax and semantics of capability temporal logic (CaTL),
a specification language for teams of heterogeneous agents. The atomic unit
of a CaTL formula is a task, different from full STL [19], which has arbitrary
predicates.

Definition 5. A counting proposition cpi = (ci,mi) ∈ Cap × N is true if at least
mi agents with capability ci are present and false otherwise [26].

Definition 6. A task is a tuple T = (d, π, {cpi}i∈IT) where d ∈ R is a duration
of time, π ∈ AP is an atomic proposition, each cpi ∈ Cap × N is a counting
proposition corresponding to how many agents with each capability should be in
each region labeled π, and IT is the index set of counting propositions associated
with task T .

In English, a task T = (d, π, {(ci,mi)}i∈IT) is satisfied if for d time units,
each of the regions labeled π contains at least mi agents with capability ci for
all {ci}i∈IT .

Definition 7. The syntax of CaTL is given in the Backus-Naur form [18] as

φ := T | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1U[a,b)φ | ♦[a,b)φ | �[a,b)φ (3)

where φ is a CaTL formula, T is a task, ∧ is conjunction, ∨ is disjunction, ⇒ is
implication, U[a,b) is time-bounded until, ♦[a,b) is time-bounded eventually, and
�[a,b) is time-bounded always.

Definition 8. The qualitative semantics of CaTL are defined over pairs (sJ , t)
where t is a time index. The semantics of a task are defined as

(sJ , t) |= T ⇔ ∀τ ∈ [t, t + d),∀q ∈ L−1(π),∀{cpi = (ci,mi)}i ∈ IT ,∑
g:ci∈g nq,g(τ) ≥ mi,

(4)

while the remaining semantics are defined identically to STL [19]. A team
trajectory satisfies a CaTL formula φ, denoted sJ |= φ, if (sJ , 0) |= φ.

Proposition 1. CaTL is a proper fragment of STL. Proof (sketch). Each task T
can be expressed as an STL formula. The remainder of syntax and semantics
for CaTL is included in STL. Thus, any CaTL formula has an equivalent STL
formula. Because CaTL requires that all predicates be part of a task T , STL is
not equivalent to CaTL.

Example 1 (Continued). Each of the tasks from Table 1 may be expressed in
CaTL as1:

1. ψ2 = ♦[0,10)(0.5, πgreen, {(IR, 2), (V is, 2)})

1 Task 1 is achieved by omitting red regions and transitions from our construction of
Env.

ScRATCHS 231

2. ψ3 = �[10,20)♦[0,5)(0.5, πblue, {(Mo, 1)})
3. ψ4 = ♦[4,12)(1, πyellow, {(UV, 2), (V is, 2)})
4. ψ5 = ♦[1,9)(1, πorange, {(V is, 2)}) ∧ ♦[10,15)(2, πorange, {(V is, 2)})

In addition to the qualitative semantics of CaTL, which can be used to deter-
mine whether a given team trajectory satisfies a specification, we consider the
availability robustness, which measures the minimum number of agents JR that
can be removed from (added to) a given team to invalidate (satisfy) the given
measure. Optimizing this quantity results in a plan that is robust to agent attri-
tion. Formally, we have:

Definition 9. The availability robustness ρa of a trajectory is defined

ρa(sJ , t, φ) =

{
min |JR| s.t. (sJ\JR

, t) �|= φ ρa(sJ , t, φ) ≥ 0
−min |JR| s.t. sJ∪JR

, t) |= φ ρa(sJ , t, φ) < 0.
(5)

The availability robustness for a given team trajectory sJ and formula φ can
be computed recursively using a set of quantitative semantics.

Definition 10 (Quantitative Semantics (availability robustness)). The availabil-
ity robustness of a task is computed recursively according to the following rule

ρa(sJ , t, T) = min
i∈IT

min
t′∈[t,t+d)

min
q∈L−1(π)

∑

g:ci∈g

nq,g(t′) − mi, (6)

and robustness for formulas is calculated as it is for STL [8].

4 Problem Formulation and Approach

Here, we formalize the problem we consider in this paper.

Problem 1 (Maximize Availability). Given a team of agents {Aj}j∈J operating
in a shared environment Env = (Q,E,W,AP,L) and a CaTL specification φ,
find a set of input signals {uj}j∈J such that ρa(sJ , 0, φ) is maximized.

Problem 1 corresponds to finding a plan for the team of agents that tolerates
the most agent drop-out. This problem formulation is useful in situations when
agent attrition is likely or in which an agent’s ability to complete its part of a
task is uncertain. We solve Problem 1 by formulating and solving an equivalent
MILP. We encode the qualitative semantics of CaTL as mixed integer linear
constraints on trajectories of a discrete-time linear system that models the envi-
ronment. Formulating Problem 1 as a MILP allows us to use commercial off-the-
shelf optimization software with optimized heuristics and solution algorithms to
find solutions more quickly than we could by using standard automata-theoretic
graph search techniques.

232 A. M. Jones et al.

5 Integer Linear Programming Encoding

In this section, we reformulate Problem 1 as a MILP. For this purpose, we make
the following assumption about the environment:

Assumption 1. The edge weight functions (transition times) are defined such
that W (q, q′) = kδt, k ∈ N where δt is a time step no larger than the minimum
value of W . Further, uj(t) = ∅ ∀t �∈ {kδt}k∈N, i.e., transitions can only happen
at a set of discrete times. That is, the transition times can all be specified by
integers.

To enable MILP encodings under Assumption 1, we define a mapping W :
Q × Q → N such that W ((q, q′)) = W((q, q′))δt for q �= q′. To enable agents
waiting at a state q, we define the weights for “self-loops” W((q, q)) = 1.

5.1 Team Dynamics

Let zq,g,k := nq,g(kδt) be the number of agents with capability set g in the region
associated with state q at time index k. Define ue,g,k as the number of agents
with capability set g entering e at time kδt. The initial positions of the agents
are encoded in the equality constraints

zq,g,0 =
∑

j∈J

I(q0,j = q)I(Capj = g) ∀q ∈ Q, g ∈ G. (7)

We use node and edge balance equations

zq,g,k =
∑

(q′,q)∈E

u(q′,q),g,k−W((q′,q)) (8a)

∑
(q,q′)∈E u(q,q′),g,k =

∑
(q′,q) u(q′,q),g,k−W((q′,q)),

∀q ∈ Q, g ∈ G, k = 0, . . . ,K
(8b)

where ue,q,k = 0 ∀e ∈ E, q ∈ Q, k < 0. These equations together form a
linear system with O((|Q| + |E|)|G|Λ) dimensions where Λ := maxe∈E W(e).
The inputs to the system (ue,c,k) as well as the states are all integer.

Proposition 2. Under Assumption 1, a team input signal u = [uj]j∈J and the
induced team trajectory sJ conform to Definitions 3–4 only if a set of variables

{zq,g,k}q∈Q,g∈G,k=0,...K ∪ {ue,g,k}e∈E,g∈G,k=0,...K

satisfy constraints (7)–(8).

ScRATCHS 233

5.2 Task Satisfaction

The satisfaction of a CaTL formula φ can be converted to a set of mixed inte-
ger linear constraints using encodings derived from STL encodings as given
in [23,25]. These encodings consist of binary variables {zφ,k}k∈K such that
zφ,k = 1 ⇔ (sJ , kδt) |= T . CaTL formulae can be built from applying recur-
sive encodings to sets of variables and constraints involving {zT,k}. Here, we
give the encodings from the constraints {zT,k}K

k=0 as functions of the variables
{zq,g,k}q∈Q,g∈G,k=0,...,K .

For a given task T = (d, π, {cpi}i∈IT), we define a variable zq,ci,mi,k ∈ {0, 1}
that we wish to be valued to 1 if at least mi agents with capability ci are in
region q at time k. This can be accomplished with the constraints

− Mzq,ci,mi,k +
∑

{g|ci∈g}
zq,g,k ≥ mi − M, (9)

where M is a sufficiently large number, e.g., M ≥ 1+max{maxi{mi}, |J |}. Under
a simple assumption of feasibility of the CaTL formula, ∀i mi ≤ |J |, M can be
taken larger than 1+ |J |. We next define integer variables zπ,ci,mi,k ∈ {0, 1} that
we wish to be valued 1 if at least mi agents with capability ci are in each region
q ∈ L−1(π) at time k. This can be accomplished with the set of constraints

zπ,ci,mi,k ≥ ∑
q∈L−1(π) zq,ci,mi,k − |L−1(π)| + 1

zπ,ci,mi,k ≤ zq,ci,mi,k ∀q ∈ L−1(π).
(10)

Next, we define integer variables zπ,IT ,k ∈ {0, 1} that we wish to be valued
1 if at least mi agents with capability ci are in each region q ∈ L−1(π) ∀i ∈ IT .
This can be accomplished with the set of constraints

zπ,IT ,k ≥ ∑
i∈IT

zπ,ci,mi,k − |IT | + 1
zπ,IT ,k ≤ zπ,ci,mi,k ∀i ∈ IT .

(11)

Finally, we define integer variables zT,k ∈ {0, 1} that we wish to be valued
1 if the task will be completed at time k + d and 0 otherwise, written as the
constraints

zT,k ≥ ∑k+d
�=k zπ,IT ,� − d + 1

zT,k ≤ zπ,IT ,� ∀	 = k, . . . , k + d.
(12)

5.3 Objective Functions

Here, we present equivalent MILP encodings for the availability robustness. The
encodings recursively define intermediate variables ra,k,ϕ whose values are equiv-
alent to ρa(sJ , kδt, ϕ) where ϕ is a subformula of a given CaTL formula φ. When
ϕ is non-atomic, the encodings for ra,k,ϕ are equivalent to standard recursive
encodings of STL [11,25]. Note that these encodings require the given formula
to be in positive normal form (PNF), i.e., contain no negations (¬).

234 A. M. Jones et al.

Proposition 3. Every CaTL formula in PNF is equivalent to an STL formula in
PNF.

In what follows, we give the encodings at the atomic task level T , i.e., ra,k,T .
Following the conventions of [25], we replace (9) with

∑
{g|ci∈g} zq,g,k − mi + M(1 − zq,ci,mi,k) ≥ ra,0,φ, (13a)

∑
{g|ci∈g} zq,g,k − mi − Mzq,ci,mi,k ≤ ra,0,φ

∀k = 0, . . . , K∀(ci,mi) appearing in φ.
(13b)

As pointed out in [24], applying recursive quantitative semantics of any STL
formula in PNF leads to compositions of minimum and maximum operators
applied to predicate values over time. Thus, the value of ρ(sJ , 0, φ) must be
equal to some value of the margin of a predicate at a certain time, i.e., by how
much a function of the value of that signal exceeds (or falls below) the constant
bound of a predicate. In our case, this corresponds to how many agents of a
certain capability ci exceed the threshold mi (

∑
{g|ci∈g} −mi) or how many

more would need to be added to meet mi (mi − ∑
{g|ci∈g}).

Proposition 4. Problem 1 is equivalent to solving the integer linear program

max
{ue,g,k}

ra,0,φ subject to (7)–(8), (10)–(12), (13). (14)

Proof. This follows directly from Proposition 2, Proposition 3, and Theorem 1
from [24].

6 Computational Experiments

Here we characterize the computational requirements of our methodology via
an extension of the precision agriculture case study used as a running example
throughout this paper. We consider a fixed specification φpa =

∧5
i=2 ψi for all of

the experiments. All computational times, number of variables, and number of
constraints for experiment are summarized in (mean/max) format. All robust-
ness values are given as means. For these experiments, we focus on the problem
of region planning and ignore low-level motion planning. We consider the results
of solving Problem 1 completely (denoted as the “Robust” method) and of solv-
ing the problem until the first feasible solution, i.e., one which satisfies φpa, is
found (denoted the “Feasible” method). These experiments were performed on
a PC with 32 cores with 2.10 GHz processors and 64 GB of RAM.

Characterization. We generate 50 random 3 × 3 grid transition systems. Edge
weights are chosen uniformly from W = {1, 2}. The label of each region in
the graph is drawn uniformly from AP = {πblue, πorange, πyellow, πgreen}. For
each randomly generated environment, we consider teams of 20 agents from four
classes each with two capabilities drawn from {V is, UV, IR,Mo}. We ensure all

ScRATCHS 235

individual capabilities are covered in the classes. The initial states of each of the
agents are selected uniformly at random.

We solve Problem 1 for each of these instances. We record the time to achieve
the solution, the number of variables, number of constraints, and availability
robustness ρa. Results from these experiments are shown in Table 2. These results
indicate that although the encoded MILP for this problem can be quite large,
the computation time is reasonably short. There is a large difference in time
between the time to find an optimal solution and the time to find the first
feasible solution. Because there are excess agents available to perform this task,
there are many satisfying solutions. However, finding the most robust solution
requires more time to search through these solutions.

Table 2. Summary statistics (mean/max) for Experiment 1.

Method Computation time (s) Variables Constraints ρa

Robust 4.63/43.44 14887/15027 10946/11238 1.54

Feasible 0.72/0.94 14931/15067 11005/11359 0

Fig. 3. Results for Experiment 2 varying the number of states (top) and Experiment 3
varying the number of agents (bottom). The first column shows overall computational
time to find the first feasible solution and maximally robust solutions. The second
column shows computational time to find the first feasible solutions, and the third
column shows availability robustness for both the maximally robust and first feasible
solutions.

236 A. M. Jones et al.

Scalability with Environment Size. For this experiment, we maintain the team
size at 20 and vary the number of states in the environment. The results are sum-
marized in Table 3 and visualized in Figs. 3a, 3c, and 3e. These results indicate
that the size of the environment (and thus the number of tasks that are required
to be performed) can have a large effect on the computation time required to
achieve a solution. This is due to an increase in the number of variables that
must be tracked, the number of constraints used to describe the environment,
and an increase in the length of the expected paths of the agents. In future work,
this effect may be mitigated during the process of abstracting the environment
model by grouping adjacent regions in which no service is required.

Table 3. Summary statistics (mean/two standard deviation) for Experiment 2.

Method Env. size Comp. time (s) Method Env. size Comp. time (s) ρa

Feasible 9 0.91/1.27 Robust 9 14.87/87.13 1.32/

Feasible 12 1.40/2.39 Robust 12 23.92/249.72 1.06

Feasible 16 2.39/6.29 Robust 16 62.82/324.78 0.88

Feasible 20 4.65/33.98 Robust 20 96.22/416.52 0.74

Feasible 25 6.74/22.47 Robust 25 147.84/864.703 0.70

Feasible 30 11.70/67.92 Robust 30 275.49/3062.48 0.50

Feasible 36 23.05/91.79 Robust 36 550.94/2441 0.26

Scalability with Team Size. For this experiment, we maintain the environment
size at 25 and vary the size of the team. The results are summarized in Table 4
and illustrated in Figs. 3b, 3d, and 3f. Note that increasing the number of agents
does not increase the computation time of either the first feasible solution or the
optimal solution. This is due to the fact that as we increase the number of avail-
able agents, more feasible solutions are available at higher levels of availability
robustness, i.e., there are more “good” solutions from which to choose. Increas-
ing the number of agents will, however, make the motion planning problem more
challenging, especially in tight workspaces.

These findings indicate that ScRATCHS can solve practical problems in the
deployment of heterogeneous teams. The gap between the very fast time to a
first feasible solution and the time between a more robust solution implies that
presenting an “any-time” planning tool to a human supervisor would be useful,
allowing them to make a trade off between timeliness and quality of solution.
Improvements in computation time could be made by limiting the number of
states in the environment one has to consider, similar to [31], and by developing
a smoother or more granular approximation to the availability robustness.

ScRATCHS 237

Table 4. Summary statistics (mean/two standard deviation) for Experiment 2.

Method Team size Comp. time (s) Method Team size Comp. time (s) ρa

Feasible 16 5.29/14.82 Robust 16 268.44/1978.16 0.54

Feasible 20 4.40/15.25 Robust 20 206.43/897.0 0.72

Feasible 24 3.88/11.24 Robust 24 163.99/853.28 1.50

Feasible 28 3.10/7.26 Robust 28 221.80/1328.00 1.82

Feasible 32 2.83/7.00 Robust 32 150.10/1513.85 1.96

Feasible 36 2.86/9.12 Robust 36 176.23/1015.38 2.08

7 Hardware Demonstration

To assess the implementability of ScRATCHS, we performed a hardware demon-
stration of the above algorithms using 10 heterogeneous robots with three unique
platforms and four unique sensing capabilities in an indoor motion capture envi-
ronment. The demonstration mimics a precision agriculture scenario where a
team of robots must inspect crops, harvest crops, survey for pests, deter pests,
and estimate water reservoir levels simultaneously. To accomplish these tasks,
agents must either take pictures of the prescribed region (inspect crops, survey
for pests, and estimate water reserves), or simply be present in the prescribed
region for the prescribed time (harvest crops and deter pests). The task defini-
tions for this demonstration are shown in Table 5 and the specification for this
demonstration is shown in Eq. 15.

The demonstration consists of three Crazyflie 2.0 nano-UAV (CF), a large
220 mm custom UAV (LD), and six iRobot Create2 ground robots (GR). Each
of these platforms communicates using the Robot Operating System (ROS)
kinetic architecture and carries a camera that can be oriented either for-
ward (F) or downward (D). The set of capabilities for this demonstration is
Capexp = {CFD,LDF,GRF,GRD}. The GRD capability is performed using a
downward RGBC color sensor (considered as a single pixel camera), and coexists
on four of the iRobot Create2 platforms with a forward facing camera.

The robots operate simultaneously in an indoor 6m × 9m arena, where robot
positions are tracked with an Optitrack motion capture system. The robots are
divided among three altitudes to augment their sensor modalities and to separate
them aerodynamically. The Crazyflie nano-UAVs fly at a higher altitude than
the custom UAV to avoid its considerable down-wash. The experimental space
is partitioned into 12 regions Q = {q0, . . . , q11} as shown in Fig. 4. The robots
initial positions are shown in Fig. 4(a).

φexp = ♦[0,20)(Tblue)
∧♦[0,25)(TH1 ∨ TH2)
∧�[0,30)♦[0,15)(TI1)
∧♦[0,30)(TI2)
∧♦[0,30)(Tred1U[0,15)(Tred2 ∨ Tred3))

(15)

238 A. M. Jones et al.

Table 5. List of tasks used in Eq. 15.

Name Duration (d) Regions (L−1(π)) Counting proposition (c) Plain english

Tred1 3 q3 {(CFD, 2)} Survey for pests

Tred2 2 q3 {(GRF, 1)} Deter pests

Tred3 3 q3 {(LDF, 1)} Deter pests

TH1 5 q5 {(GRF, 3)} Harvest crops

TH2 5 q6 {(GRF, 3)} Harvest crops

Tblue 3 q10 {(GRD, 1), (CFD, 1)} Estimate water reserves

TI1 3 q8 {(GRF, 3)} Inspect crops

TI2 2 {q0, q2} {(GRF, 1), (CFD, 1)} Inspect crops

Fig. 4. Snapshots of solution to Eq. 15 in the demonstration environment. Times 8,
20, and 25 show where specific components of the specification are satisfied and these
areas are highlighted in (b)–(d).

In plain English, φexp specifies that “Within 20 time steps initiate estimation
of the water reservoir level in q10. Within 25 time steps initiate harvesting in
either q5 or q6. Within at least every 15 time steps for the first 30 time steps
initiate an inspection of crops in region q8. Within 30 time steps initiate inspec-
tion in either region q0 or q2. Within 30 time steps initiate surveying for pests
in the red region and then within 15 time steps, either a large drone or ground
robot must enter the red region to deter pests.”

Each black region in Fig. 4 corresponds to an obstacle that no robot may
traverse. These regions and the transitions to/from them are discarded in our
construction of the environment transition system. Snapshots of the solution to
Eq. 15 at four key time steps (where components of the specification are satisfied)
are shown in Fig. 4 for the ten robots in the demonstration. This solution is also
shown in the accompanying video.

ScRATCHS 239

The motion planning for the team of robots is performed with a sequential,
timed, multi-agent rapidly exploring random trees (RRT) algorithm (more on
RRT can be found in [5]) where an agent plans its entire trajectory and is then
considered an obstacle (at specific time instants) to future planning agents. This
planning is also stratified based on operation height (i.e. drones do not consider
ground robots as obstacles). This allows the trajectories to have both flexibility
in avoiding obstacles and other agents, as well as better fitting the execution
time to the size of the experimental space.

ScRATCHS developed a motion plan to satisfy φexp in a total of 10.25 s (9.16 s
to solve the MILP and 1.09 s to generate the motion plan). This time scale is
relevant to a multitude of real world planning and coordination tasks and is
substantially faster than most teams of humans can solve moderately-sized PAC
problems by hand [15].

8 Conclusions and Future Work

In this paper, we have developed a framework for scalable and robust deployment
of teams of heterogeneous agents. ScRATCHS is able to build plans based on rich,
TL specifications involving tasks that require the participation of multiple capa-
bilities, e.g., sensing modalities, distributed across the team of agents. The plan-
ning problem is encoded as a large MILP, which can be efficiently solved using
modern commercial off-the-shelf solvers. We validated this method using compu-
tational experiments, which showed the potential scalability of the method, and
via a hardware demonstration, which illustrated the potential implementability
and applicability of our approach.

In the future, in addition to generating plans that are robust to attrition, we
will equip the team with a monitor to keep track of progress and reactive synthe-
sis techniques to alter the plan on-the-fly when attrition or delays occur. Finally,
we will also investigate parallelization by breaking the team into sub-teams and
equipping each sub-team with its own monitor and plan, thus allowing sub-
teams to operate quasi-independently and reduce the amount of communication
required to execute and alter the plan.

Additional work is required to connect ScRATCHS to other algorithms and
routines that address its limitations. ScRATCHS assumes a fixed and known
characterization of the environment. This limitation could be addressed by
assigning some agents to have an exploration role and by equipping the team
with estimation/learning capabilities. ScRATCHS assumes that all of its high-
level plans can be enacted as motion plans. This limitation can be addressed by
adding in iteratively re-solving the planning problem when unsatisfiable motion
planning problems are encountered and by using finite abstractions based on
agent dynamics as the basis for the environment description.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

240 A. M. Jones et al.

2. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynami-
cal Systems, vol. 89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
50763-7

3. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment
of distributed robotic teams. IEEE Trans. Robot. 28(1), 158–171 (2012)

4. Choi, H.-L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for
robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

5. Connell, D., La, H.M.: Extended rapidly exploring random tree–based dynamic
path planning and replanning for mobile robots. Int. J. Adv. Robot. Syst. 15(3),
1–15 (2018)

6. Cortes, J., Egerstedt, M.: Coordinated control of multi-robot systems: a survey.
SICE J. Control Measur. Syst. Integr. 10(6), 495–503 (2017)

7. Diaz-Mercado, Y., Jones, A., Belta, C., Egerstedt, M.: Correct-by-construction con-
trol synthesis for multi-robot mixing. In: 2015 54th IEEE Conference on Decision
and Control (CDC), pp. 221–226, December 2015

8. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

9. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL
specifications. Int. J. Robot. Res. 34(2), 218–235 (2015)

10. Guo, M., Dimarogonas, D.V.: Task and motion coordination for heterogeneous
multiagent systems with loosely coupled local tasks. IEEE Trans. Autom. Sci.
Eng. 14(2), 797–808 (2017)

11. Haghighi, I., Sadraddini, S., Belta, C.: Robotic swarm control from spatio-temporal
specifications. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp.
5708–5713. IEEE (2016)

12. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic
specifications. In: 2008 47th IEEE Conference on Decision and Control, CDC 2008,
pp. 3953–3958. IEEE (2008)

13. Karlsson, J., Vasile, C.-I., Tumova, J., Karaman, S., Rus, D.: Multi-vehicle motion
planning for social optimal mobility-on-demand. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 7298–7305. IEEE (2018)

14. Kiener, J., Von Stryk, O.: Cooperation of heterogeneous, autonomous robots: a
case study of humanoid and wheeled robots. In: 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 959–964. IEEE (2007)

15. Kim, J., Banks, C., Shah, J.: Collaborative planning with encoding of users’ high-
level strategies. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

16. Korsah, G., Stentz, A., Dias, M.: A comprehensive taxonomy for multi-robot task
allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

17. Leahy, K., Jones, A., Schwager, M., Belta, C.: Distributed information gather-
ing policies under temporal logic constraints. In: 2015 54th IEEE Conference on
Decision and Control (CDC), pp. 6803–6808, December 2015

18. Linz, P.: An Introduction to Formal Languages and Automata. Jones & Bartlett
Learning, Boston (2006)

19. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

20. Mittelmann, H.D.: Selected benchmark results. In: INFORMS Annual Meeting
(2016). http://plato.asu.edu/talks/informs2016 bench.pdf

https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
http://plato.asu.edu/talks/informs2016_bench.pdf

ScRATCHS 241

21. Pant, Y.V., Abbas, H., Quaye, R.A., Mangharam, R.: Fly-by-logic: control of multi-
drone fleets with temporal logic objectives. In: ACM/IEEE International Confer-
ence on Cyber-Physical Systems (ICCPS) (2018)

22. Prorok, A., Hsieh, M.A., Kumar, V.: Fast redistribution of a swarm of het-
erogeneous robots. In: Proceedings of the 9th EAI International Conference on
Bio-Inspired Information and Communications Technologies (formerly BIONET-
ICS), pp. 249–255. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2016)

23. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 81–87.
IEEE (2014)

24. Sadraddini, S.: Formal methods for resilient control (2018). https://open.bu.edu/
handle/2144/27455

25. Sadraddini, S., Belta, C.: Robust temporal logic model predictive control. In: 2015
53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 772–779. IEEE (2015)

26. Sahin, Y.E., Nilsson, P., Ozay, N.: Multirobot coordination with counting temporal
logics. arXiv preprint arXiv:1810.13087 (2018)

27. Schillinger, P., Bürger, M., Dimarogonas, D.V.: Simultaneous task allocation and
planning for temporal logic goals in heterogeneous multi-robot systems. Int. J.
Robot. Res. 37(7), 818–838 (2018)

28. Schlotfeldt, B., Thakur, D., Atanasov, N., Kumar, V., Pappas, G.J.: Anytime
planning for decentralized multirobot active information gathering. IEEE Robot.
Autom. Lett. 3(2), 1025–1032 (2018)

29. Simmons, R., et al.: Coordinated deployment of multiple, heterogeneous robots.
Technical report, Carnegie-Mellon University, School of Computer Science, Pitts-
burgh, PA (2000)

30. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

31. Vasile, C.-I., Aksaray, D., Belta, C.: Time window temporal logic. Theor. Comput.
Sci. 691, 27–54 (2017)

https://open.bu.edu/handle/2144/27455
https://open.bu.edu/handle/2144/27455
http://arxiv.org/abs/1810.13087
http://arxiv.org/abs/1711.07356

	ScRATCHS: Scalable and Robust Algorithms for Task-Based Coordination from High-Level Specifications
	1 Introduction
	2 Models and Specifications
	2.1 Environment
	2.2 Agents

	3 Capability Temporal Logic (CaTL)
	4 Problem Formulation and Approach
	5 Integer Linear Programming Encoding
	5.1 Team Dynamics
	5.2 Task Satisfaction
	5.3 Objective Functions

	6 Computational Experiments
	7 Hardware Demonstration
	8 Conclusions and Future Work
	References

