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A B S T R A C T

This vision article shows how to build on the framework of event-triggered Control Barrier Functions (CBFs) to
design model-free controllers for safety-critical multi-agent systems with unknown dynamics, including humans
in the loop. This event-triggered framework has been shown to be computationally efficient and robust while
guaranteeing safety for systems with unknown dynamics. We show how to extend it to model-free safety
critical control where a controllable ego agent does not need to model the dynamics of other agents and
updates its control based only on events dependent on the error states of agents obtained by real-time sensor
measurements. To facilitate the process of real-time sensor measurements critical in this approach, we also
present CBF relative degree reduction methods, which can reduce the number of such measurements. We
illustrate the effectiveness of the proposed framework on a multi-agent traffic merging decentralized control
problem and on highway lane changing control with humans in the loop and relative degree reduction. We
also compare the proposed event-driven method to the classical time-driven approach.
. Introduction

Safety constrained optimal control problems are central to prolif-
rating safety-critical autonomous and cyber–physical systems. Tradi-
ional Hamiltonian analysis (Bryson & Ho, 1969) and dynamic pro-
ramming (Denardo, 2003) cannot accommodate the size and nonlin-
arities of such systems, and they only work efficiently for small-scale
inear systems. Model Predictive Control (MPC) (Rawlings, Mayne, &
iehl, 2018) methods have been shown to work for large, non-linear

ystems that can be easily linearized. However, safety requirements
re hard to guarantee. Motivated by these limitations, barrier and
ontrol barrier functions enforcing hard safety constraints have re-
eived increased attention in recent years (Ames, Grizzle, & Tabuada,
014; Glotfelter, Cortes, & Egerstedt, 2017; Xiao & Belta, 2019; Xiao,
assandras, & Belta, 2023).

Barrier functions (BFs) (Tee, Ge, & Tay, 2009; Wieland & Allgower,
007) originate from optimization problems (Boyd & Vandenberghe,
004) where they are mainly used to enforce constraints in a soft
anner (i.e., no guarantees that the constraints are satisfied), and

hey have been recently employed to prove set invariance (Aubin,
009), Prajna, Jadbabaie, and Pappas (2007), Wisniewski and Sloth
2013). In particular, it was proved that if a BF for a given set satisfies
yapunov-like conditions with respect to a system’s dynamics, then
he set is forward invariant for that system (Tee et al., 2009). Control
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BFs (CBFs) are extensions of BFs for control systems, and are used to
map a constraint defined over system states into a constraint on the
control input. In contrast to BFs, CBFs are mainly used to address hard
constraints that can strictly enforce safety constraints. In its original
form Ames et al. (2014), Glotfelter et al. (2017), the CBF works for
constraints that have relative degree one with respect to the system
dynamics. The exponential CBF (Nguyen & Sreenath, 2016) and the
high order CBF (HOCBF) (Xiao & Belta, 2019) work for systems with
arbitrary relative degree constraints.

CBFs are usually based on the assumption that the control system
is affine in the control and also the cost is quadratic in the control.
Convergence to desired states is achieved by Control Lyapunov Func-
tions (CLFs) (Ames, Galloway, & Grizzle, 2012). The time domain is
then usually discretized, and the state and control are assumed to be
constant over each discrete time step. The optimal control problem
is thus reduced to a (possibly large) sequence of Quadratic Program
(QPs), one for each time interval (Galloway, Sreenath, Ames, & Grizzle,
2013) over which the control is kept constant. Most existing works
based on this QP approach use a uniform time discretization. One of
the challenges is to adapt this process (i.e., determine the next time
when a QP needs to be solved) so as to guarantee safety. The work
in Yang, Belta, and Tron (2019) proposes an approach based on the
Lipschitz constants of the system. The authors of Taylor, Ong, Cortes,
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and Ames (2021) use a procedure inspired from event-triggered control
for Lyapunov functions (Tabuada, 2007). In Ong and Cortes (2021), the
prescribed performance is used to trigger each control update using
CBFs. All these approaches assume that the dynamics are accurately
modeled, which is often not the case in reality. To infer dynamics, ma-
chine learning techniques can be used (Taylor, Singletary, Yue, & Ames,
2020) Khojasteh, Dhiman, Franceschetti, and Atanasov (2020), which
are computationally expensive and not guaranteed to yield sufficiently
accurate dynamics for the CBF method. Although it is possible to still
guarantee safety through uncertainty bounds (Taylor et al., 2020) or for
probabilistic satisfaction (Khojasteh et al., 2020), the conservativeness
issue that often arises is difficult to address. The work in Sadraddini
and Belta (2018) uses piecewise linear systems to estimate the system
dynamics, which is also computationally expensive. Moreover, all these
approaches fail to work for systems (such as time-varying systems)
that require online model identification. In contrast, we focus on how
to address the safety-critical problem with unknown dynamics in an
online and less-conservative fashion. CBFs specifically applied to multi-
agent systems have also been extensively studied in Borrmann, Wang,
Ames, and Egerstedt (2015), Cheng, Khojasteh, Ames, and Burdick
(2020). However, when an ego agent must design its own controller,
the dynamics of other agents are even harder to identify, an issue that
we also address here.

In Xiao, Belta, and Cassandras (2023), we developed a robust frame-
work by defining adaptive affine dynamics that are updated in a
time-efficient way to approximate the actual unmodeled dynamics.
The adaptive and real dynamics are related through the error states
obtained by real-time sensor measurements. We define a HOCBF for
a safety requirement on the actual system based on the adaptive
dynamics and error states, and reformulate the safety-critical control
problem as the above mentioned sequence of QPs. We determine a set
of events required to trigger each QP solution in order to ensure safety
and derive a condition that guarantees the satisfaction of the HOCBF
constraint between events. The triggering of events is based on the
value of the HOCBF. The adaptive dynamics are updated at each event
to accommodate the real dynamics according to the error states.

Compared to the traditional time-triggered framework (Ames et al.,
2014; Glotfelter et al., 2017; Xiao & Belta, 2019), the proposed method
can (a) deal with the inter-sampling effect (i.e., the satisfaction of safety
constraints within each discretized time interval), (b) This also frees
us from the need to select and tune a time step parameter which is
a challenging problem, (c) The proposed event-triggered method can
significantly reduce the frequency of solving the optimization problem
(since the number of triggering events is generally much smaller than
the number of discretized time steps), thus we can save computational
resources, and (d) We can improve the resilience with respect to
cyber-attacks (Ahmad, Sabouni, Xiao, Cassandras, & Li, 2023; Sabouni,
Cassandras, Xiao, & Meskin, 2024) in inter-connected control systems
(e.g., connected and automated vehicles considered in our paper) in
which case system (state) information is shared among different agents.
Compared to other event-triggered frameworks (Ong & Cortes, 2021;
Tabuada, 2007; Taylor et al., 2021; Yang et al., 2019) that mostly
consider single-agent problems, the proposed method can guarantee
safety for multi-agent systems with unknown dynamics.

The goal of this vision article is to review a previously proposed
event-triggered control method for safe multi-agent systems with un-
known dynamics, and use it as the starting point for several further re-
search directions. Specifically, we start by revisiting the event-triggered
framework from Xiao, Belta, and Cassandras (2023), which guaran-
tees safety for systems with unknown dynamics. Based on this, the
contributions of this article are:

(1) A model-free approach for multi-agent systems, in which the
controlled (ego) agent does not need to model the dynamics of
the other agents. We show that this can also simplify the for-
mulations of event-triggered CBFs, and discuss a research direc-
2

tion towards a completely dynamics-free, safety-critical control
framework (i.e., the identification of the adaptive control-affine
dynamics for the ego agent can also be avoided).

(2) We show how we can easily incorporate human actions into
the control loop of multi-agent systems based on the proposed
framework. This is demonstrated through a safe highway lane
changing control problem in a mixed traffic scenario, where both
the human driven vehicle dynamics and human control policies
are unavailable to the automated vehicles.

(3) Motivated by the need for measurements of high-order deriva-
tives of system states (especially for other agents) in the event-
triggered framework, we discuss directions for new research
on relative degree reduction, including the need to reduce the
conservativeness of this method.

The paper is structured as follows. We present preliminaries on
Control Barrier Functions (CBFs) and High Order CBFs in Section 2,
and formulate our problem and present a brief summary to the problem
solution in Sections 3 and 4, respectively. In Section 5, we first revisit
the event-triggered CBFs from Xiao, Belta, and Cassandras (2023),
and then propose further solutions and research directions for model-
free methods, human-in-the-loop control, and relative degree reduction
methods. We present two case studies regarding safe multi-agent con-
trol problems (one for traffic merging and one for highway lane change
maneuvering with human-in-the-loop) in Section 6, and conclude the
paper in Section 7 with future directions.

2. Preliminaries

Definition 1 (Class  Function (Khalil, 2002)). A continuous function
𝛼 ∶ [0, 𝑎) → [0,∞), 𝑎 > 0 is said to belong to class  if it is strictly
increasing and 𝛼(0) = 0.

Consider an affine control system (assumed to be known in this
section) of the form

�̇� = 𝑓 (𝒙) + 𝑔(𝒙)𝒖 (1)

where 𝒙 ∈ 𝑋 ⊂ R𝑛, where 𝑋 is a closed state constraint set, 𝑓 ∶ R𝑛 →

R𝑛 and 𝑔 ∶ R𝑛 → R𝑛×𝑞 are Lipschitz continuous, and 𝒖 ∈ 𝑈 ⊂ R𝑞 is a
closed control constraint set defined as

𝑈 ∶= {𝒖 ∈ R𝑞 ∶ 𝒖𝑚𝑖𝑛 ≤ 𝒖 ≤ 𝒖𝑚𝑎𝑥}. (2)

with 𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥 ∈ R𝑞 and the inequalities are interpreted component-
wise.

Definition 2. A set 𝐶 ⊂ R𝑛 is forward invariant for system (1) if its
solutions starting at any 𝒙(0) ∈ 𝐶 satisfy 𝒙(𝑡) ∈ 𝐶, ∀𝑡 ≥ 0.

Definition 3 (Relative Degree). The relative degree of a (sufficiently
many times) differentiable function 𝑏 ∶ R𝑛 → R with respect to
system (1) is the number of times it needs to be differentiated along
its dynamics until the control 𝒖 explicitly shows in the corresponding
derivative.

Given a function 𝑏 and a constraint 𝑏(𝒙) ≥ 0, we will also refer to
the relative degree of 𝑏 as the relative degree of the constraint.

For a constraint 𝑏(𝒙) ≥ 0 with relative degree 𝑚, 𝑏 ∶ R𝑛 → R, and
𝜓0(𝒙) ∶= 𝑏(𝒙), we define a sequence of functions 𝜓𝑖 ∶ R𝑛 → R, 𝑖 ∈
{1,… , 𝑚}:

𝜓𝑖(𝒙) ∶= �̇�𝑖−1(𝒙) + 𝛼𝑖(𝜓𝑖−1(𝒙)), 𝑖 ∈ {1,… , 𝑚}, (3)

where 𝛼𝑖(⋅), 𝑖 ∈ {1,… , 𝑚}, denotes a (𝑚 − 𝑖)𝑡ℎ order differentiable class
 function.

We further define a sequence of sets 𝐶𝑖, 𝑖 ∈ {1,… , 𝑚}, associated
with (3) in the form:

(4)
𝐶𝑖 ∶= {𝒙 ∈ 𝑋 ∶ 𝜓𝑖−1(𝒙) ≥ 0}, 𝑖 ∈ {1,… , 𝑚}.
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Definition 4 (High Order Control Barrier Function (HOCBF) (Xiao &
elta, 2019)). Let 𝐶1,… , 𝐶𝑚 be defined by (4) and 𝜓1(𝒙),… , 𝜓𝑚(𝒙) be

defined by (3). A function 𝑏 ∶ R𝑛 → R is a High Order Control Barrier
Function (HOCBF) of relative degree 𝑚 for system (1) if there exist
(𝑚 − 𝑖)𝑡ℎ order differentiable class  functions 𝛼𝑖, 𝑖 ∈ {1,… , 𝑚 − 1} and
a class  function 𝛼𝑚 such that

sup
𝒖∈𝑈

[𝐿𝑚𝑓 𝑏(𝒙) + 𝐿𝑔𝐿
𝑚−1
𝑓 𝑏(𝒙)𝒖 + 𝑅(𝑏(𝒙)) + 𝛼𝑚(𝜓𝑚−1(𝒙))] ≥ 0, (5)

for all 𝒙 ∈ 𝐶1∩,… ,∩𝐶𝑚. In (5), 𝐿𝑚𝑓 (𝐿𝑔) denotes Lie derivatives along 𝑓
(𝑔) 𝑚 (one) times, and 𝑅(⋅) denotes the remaining Lie derivatives along
𝑓 with degree less than or equal to 𝑚−1 (omitted for simplicity, see Xiao
and Belta (2019)). Moreover, it is assumed that 𝐿𝑔𝐿𝑚−1𝑓 𝑏(𝒙) ≠ 0 when
𝑏(𝒙) = 0.

The HOCBF is a general form of the relative degree one CBF (Ames
et al., 2014; Glotfelter et al., 2017), Lindemann and Dimarogonas
(2019), i.e., setting 𝑚 = 1 reduces the HOCBF to the common CBF form
(it is assumed that 𝐿𝑔𝑏(𝒙) ≠ 0 when 𝑏(𝒙) = 0):

𝐿𝑓 𝑏(𝒙) + 𝐿𝑔𝑏(𝒙)𝒖 + 𝛼1(𝑏(𝒙)) ≥ 0, (6)

and it is also a general form of the exponential CBF (Nguyen &
Sreenath, 2016).

Theorem 1 (Xiao and Belta (2019)). Given a HOCBF 𝑏(𝒙) from Def-
inition 4 with the associated sets 𝐶1,… , 𝐶𝑚 defined by (4), if 𝒙(0) ∈
𝐶1∩,… ,∩𝐶𝑚, then any Lipschitz continuous controller 𝒖(𝑡) that satisfies (5),
∀𝑡 ≥ 0 renders 𝐶1∩,… ,∩𝐶𝑚 forward invariant for system (1).

Definition 5 (Control Lyapunov Function (CLF) (Ames et al., 2012)). A
continuously differentiable function 𝑉 ∶ R𝑛 → R is an exponentially
stabilizing control Lyapunov function (CLF) for system (1) if there exist
constants 𝑐1 > 0, 𝑐2 > 0, 𝑐3 > 0 such that for ∀𝒙 ∈ R𝑛, 𝑐1‖𝒙‖2 ≤ 𝑉 (𝒙) ≤
𝑐2‖𝒙‖2,

inf
𝒖∈𝑈

[𝐿𝑓𝑉 (𝒙) + 𝐿𝑔𝑉 (𝒙)𝒖 + 𝑐3𝑉 (𝒙)] ≤ 0. (7)

Many existing works (Ames et al., 2014), Nguyen and Sreenath
(2016), Yang et al. (2019) combine CBFs for systems with relative
degree one with quadratic costs to form optimization problems. An
explicit solution to such problems can be obtained based on some
assumptions (Ames, Xu, Grizzle, & Tabuada, 2017). Alternatively, we
can discretize time and an optimization problem with constraints given
by the CBFs (inequalities of the form (5) ) is solved at each time step.
The inter-sampling effect in this approach is considered in Yang et al.
(2019). If convergence to a state is desired, then a CLF constraint of the
form (7) is added, as in Ames et al. (2014) (Yang et al., 2019). Note that
these constraints are linear in the control since the state value is fixed at
the beginning of the interval. Therefore, each optimization problem is a
quadratic program (QP). The optimal control obtained by solving each
QP is applied at the current time step and held constant for the whole
interval. The state is updated using dynamics (1), and the procedure is
repeated. Replacing CBFs by HOCBFs allows us to handle constraints
with arbitrary relative degree (Xiao & Belta, 2019). Throughout the
paper, we will refer to this method as the time-driven approach. The CBF
method works if (1) is an accurate model for the system. However, this
is often not the case in reality, especially for time-varying systems. In
what follows, we show how we can find a safety-guaranteed controller
for systems with unknown dynamics.

3. Problem formulation

We consider a multi-agent system with a controlled agent (state
𝒙 ∈ 𝑋 and control 𝒖 ∈ 𝑈) whose dynamics are unknown, and with
a set 𝑆𝑎 of other agents (state 𝒚𝑖 ∈ 𝑋 for agent 𝑖 ∈ 𝑆𝑎) whose dynamics
are also unknown. For instance, the controlled agent could be the ego
vehicle in autonomous driving, and the other agents are either other
3
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vehicles or obstacles. The controlled agent only has onboard sensors to
detect its own state and that of other agents (which may be controlled
by humans). We make the following assumption about the unknown
dynamics of both controlled and uncontrolled agents:

Assumption 1. The relative degree of each component of 𝒙 with
respect to the real unknown dynamics1 is known for the real unknown
dynamics, and the same applies to 𝒚𝑖, 𝑖 ∈ 𝑆𝑎.

A typical example for the above assumption is the autonomous
driving problem, in which case we have a controlled (ego) vehicle
and some other vehicles around the controlled one. If the position of
the controlled vehicle (whose dynamics are unknown) is a component
in 𝒙 and the control is acceleration, then the relative degree of the
position with respect to the unknown vehicle dynamics is two by
Newton’s law. The same applies to other vehicles that the controlled
vehicle may interact with. We assume that we have sensors to monitor
𝒙 and its derivatives, as well as to monitor 𝒚𝑖 and its derivatives
for all 𝑖 ∈ 𝑆𝑎. Measuring derivatives of 𝒙 can be challenging, but
accurate measurements may not be necessary: in fact, we can relax this
requirement by limiting measurement accuracy within some bounds, as
shown later.

Objective 1 (Minimizing Cost). Consider an optimal control problem for
the real unknown dynamics of the controlled agent with the cost:

min
𝒖(𝑡) ∫

𝑇

0
(‖𝒖(𝑡)‖)𝑑𝑡 (8)

where ‖ ⋅ ‖ denotes the 2-norm of a vector, (⋅) is a strictly increasing
function of its argument. 𝑇 > 0.

Objective 2 (Terminal State Constraint). We wish the terminal state 𝒙(𝑇 )
to reach a point 𝑲 , where 𝑲 ∈ R𝑛.

Objective 2 can be easily extended to multiple terminal state con-
straints for different desired points.

Safety requirements: The real unknown dynamics of the con-
trolled agent should always satisfy a safety requirement with respect
to another agent 𝑖 ∈ 𝑆𝑎 whose dynamics are also unknown:

𝑏(𝒙(𝑡), 𝒚𝑖(𝑡)) ≥ 0,∀𝑡 ∈ [0, 𝑇 ], (9)

where 𝑏 ∶ R𝑛 × R𝑛 → R is continuously differentiable and has relative
degree 𝑚 ∈ N with respect to the real dynamics of the controlled agent.

The above safety constraint is defined pairwise, but can be extended
to involve more than two agents. The relative degree 𝑚 is known by
Assumption 1.

Control constraints: The controlled agent should always satisfy
control bounds in the form of (2).

A control policy for the real unknown dynamics of the controlled
agent is 𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 if constraints (2) and (9) are satisfied at all times.
Note that state limitations are particular forms of (9) that only depend
on the state 𝒙. In this paper, we consider the following problem:

Problem 1. Given real-time sensor measurements for 𝒙, 𝒚𝑖, 𝑖 ∈ 𝑆𝑎 and
their derivatives, find an online and feasible control policy for the real
unknown dynamics of the controlled agent such that the cost (8) is
minimized.

The above optimal control problem is assumed to be feasible. Due
to the unknown dynamics, the problem is generally hard to solve using
optimal control methods such as Hamiltonian analysis. One way to
address this is to assume linear models for all agents, which often

1 The derivative of each component of 𝒙 is a function of the whole state
according to the dynamics of the system. The relative degree can then we

efined using Definition 3
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allows us to find analytical optimal controls for all the agents, as shown
in Xiao and Cassandras (2021). Then, we may use the optimal solutions
as a reference for the low level controllers, such as the CBF-based QP
controller, that accounts for the system unknown dynamics. Optimal
control solutions and case studies can be found in Xiao and Cassandras
(2021). In this paper, we focus on the safety of multi-agent systems
with unknown dynamics. We first review solutions using the event-
triggered CBFs (Xiao, Belta, & Cassandras, 2023), as shown in the
next section, and then discuss new approaches regarding model-free
methods, relative degree reduction, and a human in the loop study for
real world applications.

4. Approach

In order to solve Problem 1 in an online fashion, we replace the
safety constraints above by HOCBF constraints, and solve it through a
sequence of discretization steps. Thus, Problem 1 is solved by pointwise
optimization, which leads to sub-optimal solutions compared to the
original problem. As detailed in Xiao, Belta, and Cassandras (2023),
there are four steps involved in the solution:

Step 1: define adaptive affine dynamics for the controlled agent
and adaptive dynamics for other agents. We need affine dynamics
of the form (1) in order to apply the CBF-based QP approach to solve
Problem 1. Under Assumption 1, we define affine dynamics that have
the same relative degree for (9) as the real controlled agent and we
estimate through �̄� the actual state 𝒙 using the dynamics:

̇̄𝒙 = 𝑓𝑎(�̄�) + 𝑔𝑎(�̄�)𝒖 (10)

where 𝑓𝑎 ∶ R𝑛 → R, 𝑔𝑎 ∶ R𝑛 → R𝑛×𝑞 , and �̄� ∈ 𝑋 ⊂ R𝑛 is the state
vector corresponding to 𝒙 in the unknown dynamics. Since 𝑓𝑎(⋅), 𝑔𝑎(⋅)
in (10) can be adaptively updated to accommodate the real unknown
dynamics, as shown in the next section, we call (10) adaptive affine
dynamics. The real unknown dynamics and (10) are related through the
error states 𝒆 ∶= 𝒙− �̄� obtained from the real-time measurements of the
agent and the integration of (10) as 𝑓𝑎, 𝑔𝑎 are known. Based on user-
defined bounds for these errors, the convergence of the adaptive affine
dynamics (10) to the real dynamics depends on the update events.
Theoretically, we can consider any affine dynamics in (10) to model
the agent as long as their states are of the same dimension and with the
same physical interpretation as those of the plant. Clearly, we would
like the adaptive dynamics (10) to ‘‘stay close’’ to the real dynamics.
This notion will be formalized in the next section.

Along the same lines, if other agents have their own (unknown)
dynamic models, we also define adaptive dynamics for each agent
𝑖 ∈ 𝑆𝑎 to estimate its real unknown dynamics in the form:

̇̄𝒚𝑖 = ℎ𝑎,𝑖(�̄�𝑖) (11)

where �̄�𝑖 ∈ 𝑋 with ℎ𝑎,𝑖 ∶ R𝑛 → R, and �̄�𝑖 is the state vector corre-
sponding to 𝒚𝑖 in the unknown dynamics. Note that ℎ𝑎,𝑖(⋅) will also be
adaptively updated and we refer to (11) as adaptive dynamics. The real
unknown dynamics of agent 𝑖 ∈ 𝑆𝑜 and (11) are also related through
the error states obtained from the real-time measurements of the agent
and the integration of (11) (as ℎ𝑎,𝑖 is known). Observe that it is possible
that ℎ𝑎,𝑖(⋅) also includes the control of agent 𝑖 (which is omitted for
simplicity), in which case we have a multi-agent control problem. We
may define adaptive affine dynamics as in (10) for other agents as
well. Our approach in this paper can also work for such multi-agent
control problems (in which case (11) is also affine in control). We can
also explicitly model the human controlled agents similarly, in which
case we may predict the human control and study human-autonomous
system interactions. We focus only on decentralized multi-agent control
problems in this paper for simplicity, but the proposed framework can
be applied to cases in which controls should be jointly determined (as
in game theory). Therefore, we omit the control component in ℎ𝑎,𝑖(⋅).

Model-free cases. Unlike the analysis in Xiao, Belta, and Cassandras
(2023), we do not wish to find controls for other agents and to avoid
4

Fig. 1. The solution framework for Problem 1 using adaptive dynamics for all agents
(joint optimal control for multi-agent systems is possible), the connection between the
real unknown dynamics of the controlled agent and the adaptive affine dynamics (10),
and the connection between the real unknown dynamics of other agents in 𝑆𝑎 and the
adaptive dynamics (11). The states 𝒙, 𝒚𝑖 , 𝑖 ∈ 𝑆𝑎 are from the sensor measurements of
the controlled agent and the other agents.

the estimation of the adaptive dynamics (11). Thus, we may directly
use 𝒚𝑖 and its derivatives in formulating CBFs/HOCBFs. This is what
we refer to as model-free safety-critical control in this paper.

Step 2: find a HOCBF that guarantees (9). Based on (10), (11) (or,
directly, 𝒚𝑖 and its derivatives), the error state and its derivatives, we
use a HOCBF to enforce (9). Details are shown in the next section.

Step 3: formulate the CBF-based QP. We use a CLF to have the
terminal state approach 𝑲 in Objective 2. The approach to guarantee
convergence for unknown dynamics is similar to the above mentioned
HOCBF method, and it will be presented in the following sections. If
(‖𝒖(𝑡)‖) = ‖𝒖(𝑡)‖2 in (8), then we can formulate Problem 1 using a
CBF-CLF-QP approach (Ames et al., 2014), with a CBF replaced by a
HOCBF (Xiao & Belta, 2019) if 𝑚 > 1.

Step 4: determine the events required to specify when to
solve the QP and the conditions that guarantee the satisfaction
of (9) between events. We need to determine the event times 𝑡𝑘, 𝑘 =
1, 2,…(𝑡1 = 0) at which each QP must be solved in order to guarantee
the satisfaction of (9) for the real unknown dynamics. Since there is
obviously a difference between the adaptive affine dynamics (10) and
the real unknown dynamics of the controlled agent (as well as between
the adaptive dynamics (11) and other agents), in order to guarantee
safety for the controlled agent, we need to properly define events
(dependent on the error states, the state of (10), and the state of (11)
or 𝒚𝑖 and its derivatives in model-free cases) to solve the QP.

The proposed solution framework is outlined in Fig. 1 (from Xiao,
Belta, and Cassandras (2023)) with the extension to model-free cases
for all other agents shown in Fig. 2, where we note that we apply the
same control from the QP to both the real unknown dynamics of the
controlled agent and to the adaptive affine dynamics in (10). We also
point out that in a static environment, i.e., other agent states do not
change or are known, we can remove the adaptive dynamics and other
plant blocks in Figs. 1 and 2.

5. Safety-critical control

In this section, we treat the terminal cost in Objective 2 as a soft
constraint, and provide the technical details involved in formulating the
CBF-based QPs that guarantee the satisfaction of the safety constraint
(9) for the controlled agent. We start with a review from Xiao, Belta,
and Cassandras (2023) of the case that includes adaptive dynamics for
all the agents in multi-agent systems and then present the extension to
the model-free case.

5.1. Model-based methods for unknown dynamics

In this subsection, we review the event-triggered CBF method (Xiao,
Belta, & Cassandras, 2023) to motivate new directions along this line.
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Fig. 2. The solution framework for Problem 1 in which case all other agents are model-
free (only decentralized optimal control for the ego agent is possible), the connection
between the real unknown dynamics of the controlled agent and the adaptive affine
dynamics (10). The states 𝒙, 𝒚𝑖 , �̇�𝑖 , 𝑖 ∈ 𝑆𝑎 are from the sensor measurements of the
controlled agent and the other agents.

We first consider the case that the safety constraint in (9) has relative
degree one with respect to both dynamics (10) and the actual dynamics
of the controlled agent. In this case, since (9) involves the state of both
the controlled agent and agent 𝑖 ∈ 𝑆𝑎, the set 𝐶1 corresponding to (4)
takes the form:

𝐶1 = {(𝒙, 𝒚𝑖) ∈ 𝑋 ×𝑋 ∶ 𝑏(𝒙, 𝒚𝑖) ≥ 0}. (12)

Next, we show how to find a CBF that guarantees (9) for the real
unknown dynamics. Let

𝒆𝑥 ∶= 𝒙 − �̄�, 𝒆𝑖 = 𝒚𝑖 − �̄�𝑖, 𝑖 ∈ 𝑆𝑎. (13)

Note that 𝒙 and �̄� are state vectors from direct measurements of the
controlled agent and from the adaptive affine dynamics (10), respec-
tively, and 𝒚𝑖 and �̄�𝑖 are state vectors from direct measurements of
agent 𝑖 ∈ 𝑆𝑎 and from the adaptive dynamics (11), respectively. Then,

𝑏(𝒙, 𝒚𝑖) = 𝑏(�̄� + 𝒆𝑥, �̄�𝑖 + 𝒆𝑖). (14)

Differentiating 𝑏(�̄� + 𝒆𝑥, �̄�𝑖 + 𝒆𝑖), we have
𝑑𝑏(�̄�+𝒆𝑥, �̄�𝑖+𝒆𝑖)

𝑑𝑡
=
𝜕𝑏(�̄�+𝒆𝑥, �̄�𝑖+𝒆𝑖)

𝜕�̄�
̇̄𝒙+
𝜕𝑏(�̄�+𝒆𝑥, �̄�𝑖+𝒆𝑖)

𝜕𝒆𝑥
�̇�𝑥

+
𝜕𝑏(�̄�+𝒆𝑥, �̄�𝑖+𝒆𝑖)

𝜕�̄�𝑖
̇̄𝒚𝑖 +

𝜕𝑏(�̄�+𝒆𝑥, �̄�𝑖+𝒆𝑖)
𝜕𝒆𝑖

�̇�𝑖
(15)

where �̇�𝑥 = �̇� − ̇̄𝒙, �̇�𝑖 = �̇�𝑖 − ̇̄𝒚𝑖 are evaluated online through �̇�, �̇�𝑖 (from
direct measurements of the actual state derivatives) and ̇̄𝒙, ̇̄𝒚𝑖 are given
through (10), (11), respectively. Note that ̇̄𝒙 would be involved with
the control 𝒖 due to the adaptive affine dynamics (10) and the fact
that the safety constraint has relative degree one. The same applies to
̇̄𝒚𝑖. This formulation allows us to get a control constraint over the ego
agent and/or agent 𝑖 ∈ 𝑆𝑎.

Remark 1 (Measurement Uncertainties). If the measurements 𝒙 and �̇�
(or 𝒚𝑖 and �̇�𝑖) are subject to uncertainties, and the uncertainties are
bounded, then we can apply the bounds of 𝒙 and �̇� (or 𝒚𝑖 and �̇�𝑖) in
evaluating the next event time 𝑡𝑘+1 (introduced later) instead of 𝒙 and
�̇� (or 𝒚𝑖 and �̇�𝑖) themselves. In other words, 𝒆𝑥(𝑡) and �̇�𝑥(𝑡) (𝒆𝑖(𝑡) and
�̇�𝑖(𝑡)) are determined by the bounds of 𝒙, �̇� (or 𝒚𝑖 and �̇�𝑖) and the state
values of the adaptive affine system (10) (or (11)).

The CBF constraint that guarantees (9) for known dynamics (1) is
as in (6), which is obtained by replacing �̇� with (1). However, for the
unknown dynamics, the CBF constraint is:
𝑑𝑏(𝒙, 𝒚𝑖)

𝑑𝑡
+ 𝛼1(𝑏(𝒙, 𝒚𝑖)) ≥ 0.

Equivalently, we have
𝑑𝑏(�̄�+𝒆𝑥, �̄�𝑖+𝒆𝑖) + 𝛼 (𝑏(�̄�+𝒆 , �̄� +𝒆 )) ≥ 0. (16)
5

𝑑𝑡 1 𝑥 𝑖 𝑖
Combining (15), (16), (10) and (11), we get the CBF constraint that
guarantees (9):

𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�

𝑓𝑎(�̄�) +
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�

𝑔𝑎(�̄�)𝒖 +
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕𝒆𝑥

�̇�𝑥

+
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�𝑖

ℎ𝑎,𝑖(�̄�𝑖) +
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕𝒆𝑖

�̇�𝑖 + 𝛼1(𝑏(𝒙, 𝒚𝑖)) ≥ 0.
(17)

Recall that we may have the control input showing up in ℎ𝑎,𝑖(�̄�𝑖),
in which case the above CBF constraint (17) depends on both the
control input 𝒖 of the current controlled agent and the control 𝒖𝑖
of agent 𝑖 ∈ 𝑆𝑎. In other words, we have a multi-agent control
problem that jointly determines all control inputs for safety guarantees,
which can still be obtained using the proposed framework. The above
constraint can also build safe human interaction when there are some
human-controlled agents since both human control and the control of
autonomous agent will show up in (17). Then, the satisfaction of (17)
implies the satisfaction of 𝑏(�̄� + 𝒆𝑥, �̄�𝑖 + 𝒆𝑖) ≥ 0 by Theorem 1 and (14).
Thus, (9) is guaranteed to be satisfied for the real unknown dynamics
of the controlled agent. For the above CBF constraint, we have the
following assumption:

Assumption 2. 𝜕𝑏(𝒙,𝒚𝑖)
𝜕�̄� 𝑔𝑎(�̄�) ≠ 𝟎,∀𝒙 ∈ 𝑋,∀𝒚𝑖 ∈ 𝑋 such that 𝑏(𝒙, 𝒚𝑖) = 0.

This assumption may not be necessary for a safety-enforcing CBF,
as the system trajectory with a CBF (HOCBF) for safety will never
reach the safe set boundary, as shown in Lemma 1 of Xiao, Belta, and
Cassandras (2021b), if we define power class- functions with power
no less than 1 in the CBF and if the initial state is inside the safe
set. If Assumption 2 does not hold and the CBF constraint (17) is not
satisfied (without the 𝒖 component) at the boundary of the set 𝐶1,
then we may shrink the safe set (if the manifold of {(𝒙, 𝒚𝑖)|

𝜕𝑏
𝜕𝒙 = 0}

does not cut through the safe set) or define another CBF so that the
system avoids those states (Tan, Shaw Cortez, & Dimarogonas, 2021);
however, this approach can make the system conservative. We may also
define a higher relative degree CBF than needed so as to address this
problem. A more general non-conservative approach is the subject of
future research.

Note that, if 𝒚𝑖 in (9) and the dynamics (11) are known, we may just
consider a single agent control problem, i.e. we just have 𝑏(𝒙) instead
of 𝑏(𝒙, 𝒚𝑖), then we obtain the following simple version of the above
CBF constraint:
𝜕𝑏(𝒙)
𝜕�̄�

𝑓𝑎(�̄�) +
𝜕𝑏(𝒙)
𝜕�̄�

𝑔𝑎(�̄�)𝒖 +
𝜕𝑏(𝒙)
𝜕𝒆𝑥

�̇�𝑥 + 𝛼1(𝑏(𝒙)) ≥ 0. (18)

Now, we can formulate a CBF-based optimal control problem in the
form:

min
𝒖(𝑡),𝛿(𝑡)∫

𝑇

0

(

‖𝒖(𝑡)‖2 + 𝑝𝛿2(𝑡)
)

𝑑𝑡 (19)

subject to (17), (2), and the relaxed CLF constraint

𝐿𝑓𝑎𝑉 (�̄�) + 𝐿𝑔𝑎𝑉 (�̄�)𝒖 + 𝜖𝑉 (�̄�) ≤ 𝛿(𝑡), (20)

where 𝑉 (�̄�) = (�̄� − 𝑲)𝑇 𝑃 (�̄� − 𝑲), 𝑃 is positive definite, 𝑐3 = 𝜖 > 0 in
Definition 5, 𝑝 > 0, and 𝛿(𝑡) is a relaxation for the CLF constraint. Since
state convergence is relaxed in this section, we just replace 𝒙 by �̄� in the
above CLF constraint. The above optimization is a suboptimal solution
of Problem 1 where we assume a quadratic cost corresponding to (8).
The use of the relaxation variable 𝛿(𝑡) is to ensure the problem is always
feasible when the state convergence conflicts with safety constraints.
In the case of multi-agent control, the above optimization process also
allows human-autonomous system interaction that ensures the safety of
all agents since both the human control and the control of autonomous
agents show up in the CBF constraint (17). Details of this direction are
left for future research exploration.

Following the time-driven approach introduced at the end of Sec-
tion 2, we solve the problem (19) at each time 𝑡𝑘, 𝑘 = 1, 2… for
a fixed control over the ensuing time step (𝑡 , 𝑡 ], which therefore
𝑘 𝑘+1
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becomes a QP. However, at time 𝑡𝑘, the QP does not generally know
the error states 𝒆𝑥(𝑡), 𝒆𝑖(𝑡) and their derivatives �̇�𝑥(𝑡), �̇�𝑖(𝑡),∀𝑡 > 𝑡𝑘. Thus,
it cannot guarantee that the CBF constraint (17) is satisfied in the time
interval (𝑡𝑘, 𝑡𝑘+1], where 𝑡𝑘+1 is the next time instant to solve the QP.
This is what motivates the introduction of events defining the conditions
needed to guarantee the satisfaction of (17)∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1]. We start by
imposing bounds on 𝒆𝑥 = (𝑒𝑥,1,… , 𝑒𝑥,𝑛) and �̇�𝑥 = (�̇�𝑥,1,… , �̇�𝑥,𝑛) defined
as 𝒘 = (𝑤1,… , 𝑤𝑛) ∈ R𝑛>0 and 𝝂 = (𝜈1,… , 𝜈𝑛) ∈ R𝑛>0:

|𝑒𝑥,𝑗 | ≤ 𝑤𝑗 , |�̇�𝑥,𝑗 | ≤ 𝜈𝑗 , 𝑗 ∈ {1,… , 𝑛}. (21)

These two inequalities can be rewritten in the form |𝒆𝑥| ≤ 𝒘, |�̇�𝑥| ≤ 𝝂
for simplicity. Similarly, we also bound 𝒆𝑖, �̇�𝑖:

|𝒆𝑖| ≤ 𝑾 𝑖, |�̇�𝑖| ≤ 𝑽 𝑖, 𝑖 ∈ 𝑆𝑎. (22)

where the inequalities are interpreted componentwise, and 𝑾 𝑖 ∈
R𝑛>0,𝑽 𝑖 ∈ R𝑛>0.

Similar to the bounds we introduced for the error states and their
derivatives, we also define the following bounds on the deviations of
states from their values �̄�(𝑡𝑘) and �̄�𝑖(𝑡𝑘), 𝑖 ∈ 𝑆𝑎:

�̄�(𝑡𝑘) − 𝒔(𝛽1(𝑏(𝒙, 𝒚𝑖))) ≤ �̄� ≤ �̄�(𝑡𝑘) + 𝒔(𝛽1(𝑏(𝒙, 𝒚𝑖))),

�̄�𝑖(𝑡𝑘) − 𝑺 𝑖(𝛽2(𝑏(𝒙, 𝒚𝑖))) ≤ �̄�𝑖 ≤ �̄�𝑖(𝑡𝑘) + 𝑺 𝑖(𝛽2(𝑏(𝒙, 𝒚𝑖))),
(23)

where the inequalities are interpreted componentwise, 𝒔 ∶ R →
R𝑛>0,𝑺 𝑖 ∶ R → R𝑛>0, and 𝛽1(⋅), 𝛽2(⋅) are class  functions. Proper se-
lection of the above adaptive bounds that depend on the value of CBFs
can address the conservativeness of the event-triggered framework, as
shown in Xiao, Belta, and Cassandras (2023). For simplicity, we can
just use constant vectors 𝒔 ∈ R𝑛,𝑺 𝑖 ∈ R𝑛 in the above. Their relative
advantages and the choice of 𝒔(⋅),𝑺 𝑖(⋅) will be discussed later. We
denote the set of states that satisfy (23) at time 𝑡𝑘 by

𝑆𝑥(𝑡𝑘) = {𝒚1 ∈ 𝑋 ∶ �̄�(𝑡𝑘) − 𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))) ≤

𝒚1 ≤ �̄�(𝑡𝑘) + 𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))), 𝑖 ∈ 𝑆𝑎}.
(24)

𝑆𝑦,𝑖(𝑡𝑘) = {𝒚2 ∈ R𝑛 ∶ �̄�𝑖(𝑡𝑘) − 𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))) ≤

𝒚2 ≤ �̄�𝑖(𝑡𝑘) + 𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘))))}.
(25)

Now, with (21), (22) and (23), we are ready to find a condition that
guarantees the satisfaction of (17) in the time interval (𝑡𝑘, 𝑡𝑘+1]. This is
done by considering the minimum value of each component in (17), as
shown next.

Let 𝒛 ∶= (𝒚1, 𝒆𝑥, �̇�𝑥, 𝒚2, 𝒆𝑖, �̇�𝑖), where 𝒚1 ∈ 𝑆𝑥(𝑡𝑘), 𝒚2 ∈ 𝑆𝑦,𝑖(𝑡𝑘). We
then define an overall set 𝑆(𝑡𝑘):

𝑆(𝑡𝑘) = {𝒛 ∈ R6𝑛 ∶ 𝒚1 ∈ 𝑆𝑥(𝑡𝑘), |𝒆𝑥| ≤ 𝒘,

|�̇�𝑥| ≤ 𝝂, 𝒚2 ∈ 𝑆𝑦,𝑖(𝑡𝑘), |𝒆𝑖| ≤ 𝑾 𝑖,

|�̇�𝑖| ≤ 𝑽 𝑖, (𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖) ∈ 𝐶1, 𝑖 ∈ 𝑆𝑎}.
(26)

Consider the first term in (17) and let 𝑏𝑓𝑎 ,𝑚𝑖𝑛(𝑡𝑘) ∈ R be the
minimum value of 𝜕𝑏(�̄�+𝒆𝑥 ,�̄�𝑖+𝒆𝑖)

𝜕�̄� 𝑓𝑎(�̄�) for the preceding time interval that
atisfies 𝒛 ∈ 𝑆(𝑡𝑘) starting at time 𝑡𝑘, i.e., let

𝑓𝑎 ,𝑚𝑖𝑛(𝑡𝑘) = min
𝒛∈𝑆(𝑡𝑘)

𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖)
𝜕𝒚1

𝑓𝑎(𝒚1). (27)

imilarly, we can also find the four scalar minimum values 𝑏𝛼1 ,𝑚𝑖𝑛(𝑡𝑘),
𝑒,𝑚𝑖𝑛(𝑡𝑘), 𝑏ℎ𝑎,𝑖 ,𝑚𝑖𝑛(𝑡𝑘), and 𝑏𝐸𝑖 ,𝑚𝑖𝑛(𝑡𝑘) of 𝛼1(𝑏(𝒙, 𝒚𝑖)),

𝜕𝑏(𝒙,𝒚𝑖)
𝜕𝒆𝑥

�̇�𝑥,
𝜕𝑏(𝒙,𝒚𝑖)
𝜕�̄�𝑖

ℎ𝑎,𝑖(�̄�𝑖),
𝜕𝑏(𝒙,𝒚𝑖)
𝜕𝒆𝑖

�̇�𝑖, 𝑖 ∈ 𝑆𝑎, respectively, for the preceding time
nterval [𝑡𝑘, 𝑡𝑘+1] that satisfy 𝒛 ∈ 𝑆(𝑡𝑘) starting at time 𝑡𝑘, i.e., let

𝑏𝛼1 ,𝑚𝑖𝑛(𝑡𝑘) = min
𝒛∈𝑆(𝑡𝑘)

𝛼1(𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖)), (28)

𝑏𝑒,𝑚𝑖𝑛(𝑡𝑘) = min
𝒛∈𝑆(𝑡𝑘)

𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖)
𝜕𝒆𝑥

�̇�𝑥, (29)

ℎ𝑎,𝑖 ,𝑚𝑖𝑛(𝑡𝑘) = min
𝒛∈𝑆(𝑡𝑘)

𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖)
𝜕𝒚2

ℎ𝑎,𝑖(𝒚2), (30)

𝑏𝐸 ,𝑚𝑖𝑛(𝑡𝑘) = min
𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖) �̇�𝑖, (31)
6

𝑖 𝒛∈𝑆(𝑡𝑘) 𝜕𝒆𝑖
The above optimizations may be nonlinear programs (NLPs). If the
afety constraints are linear, then each optimization is just a LP or QP.
owever, note that even the NLPs are easy to solve since the constraints
re mostly linear, as shown in the case studies of Section 6.

This leaves only one remaining term in (17): if 𝜕𝑏(𝒙,𝒚𝑖)
𝜕�̄� 𝑔𝑎(�̄�) is

independent of �̄�, 𝒆𝑥, �̄�𝑖, 𝒆𝑖, then we do not need to find its limit value
within the bound 𝒛 ∈ 𝑆(𝑡𝑘); otherwise, let �̄� = (�̄�1,… , �̄�𝑛) ∈ R𝑛,
𝒖 = (𝑢1,… , 𝑢𝑞) ∈ R𝑞 and 𝑔𝑎 = (𝑔1,… , 𝑔𝑞) ∈ R𝑛×𝑞 . The sign of
𝑢𝑗 (𝑡𝑘), 𝑗 ∈ {1,… , 𝑞}, 𝑘 = 1, 2… can be determined by solving the
CBF-based QP (19) at time 𝑡𝑘. We can then determine the limit value
𝑏𝑔𝑗 ,𝑙𝑖𝑚(𝑡𝑘) ∈ R, 𝑗 ∈ {1,… , 𝑞} of 𝜕𝑏(𝒙,𝒚𝑖)

𝜕�̄� 𝑔𝑗 (�̄�) by

𝑔𝑗 ,𝑙𝑖𝑚(𝑡𝑘)=

⎧

⎪

⎨

⎪

⎩

min
𝒛∈𝑆(𝑡𝑘)

𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖)
𝜕𝒚1

𝑔𝑗 (𝒚1), if 𝑢𝑗 (𝑡𝑘)≥0,

max
𝒛∈𝑆(𝑡𝑘)

𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚2 + 𝒆𝑖)
𝜕𝒚1

𝑔𝑗 (𝒚1), otherwise
(32)

Let 𝑏𝑔𝑎 ,𝑙𝑖𝑚(𝑡𝑘) = (𝑏𝑔1 ,𝑙𝑖𝑚(𝑡𝑘),… , 𝑏𝑔𝑞 ,𝑙𝑖𝑚(𝑡𝑘)) ∈ R𝑞 , and we set 𝑏𝑔𝑎 ,𝑙𝑖𝑚(𝑡𝑘) =
𝜕𝑏(𝒙,𝒚𝑖)
𝜕�̄� 𝑔𝑎(�̄�) if 𝜕𝑏(𝒙,𝒚𝑖)

𝜕�̄� 𝑔(�̄�) is independent of �̄�, 𝒆𝑥, �̄�𝑖, 𝒆𝑖 for notational
implicity.

To sum up, the condition that guarantees the satisfaction of (17) in
he time interval (𝑡𝑘, 𝑡𝑘+1] is given by

𝑓𝑎 ,𝑚𝑖𝑛(𝑡𝑘) + 𝑏𝑔𝑎 ,𝑙𝑖𝑚(𝑡𝑘)𝒖(𝑡𝑘) + 𝑏𝑒𝑥 ,𝑚𝑖𝑛(𝑡𝑘) + 𝑏ℎ𝑎,𝑖 ,𝑚𝑖𝑛(𝑡𝑘)

+𝑏𝑒𝑖 ,𝑚𝑖𝑛(𝑡𝑘) + 𝑏𝛼1 ,𝑚𝑖𝑛(𝑡𝑘) ≥ 0.
(33)

We would also like to add the sign condition to the set 𝑆(𝑡𝑘) in
rder to make this framework work as shown in (32), i.e., we add
𝜕𝑏(𝒙,𝒚𝑖)
𝜕�̄� 𝑔𝑖(�̄�) ≥ 0 if 𝜕𝑏(𝒙,𝒚𝑖)

𝜕�̄� 𝑔𝑖(�̄�) is positive at time 𝑡𝑘, and vice versa.
ote that, despite Assumption 2, it is still possible that 𝑏𝑔𝑎 ,𝑙𝑖𝑚(𝑡𝑘) = 𝟎
y (32) as we consider all possible state 𝒛 ∈ 𝑆(𝑡𝑘). If (33) is satisfied
ven without the control component, then the safety is still guaranteed
ven if we do not consider (33) in the QP. Otherwise, we can deal with
t with the approaches discussed after Assumption 2. In this paper, we
une the parameters of the CBF (i.e., how to define a class- function
f a CBF) and change the reference path (e.g., changing the parameters
such as 𝑐3 in Definition 5) of a CLF) to avoid these possible ‘‘singular’’
tates.

In order to apply the above condition (33) to the problem (19), we
ust replace (17) by (33) and consider the problem at time 𝑡𝑘, i.e., we
ave a QP:

min
𝒖(𝑡𝑘),𝛿(𝑡𝑘)

‖𝒖(𝑡𝑘)‖2 + 𝑝𝛿2(𝑡𝑘) (34)

ubject to (33), (2) and (20). The feasibility of the above QPs can
e guaranteed by finding a suitable feasibility constraint, as shown
n Xiao, Belta, and Cassandras (2022); briefly, we determine sufficient
onditions for feasibility and then enforce them by using another CBF.
Triggering events: Based on the above, we define seven events that

etermine the condition that triggers an instance of solving the QP (34):

• Event 1: |𝒆𝑥| ≤ 𝒘 is about to be violated.
• Event 2: |�̇�𝑥| ≤ 𝝂 is about to be violated.
• Event 3: the state of (10) reaches the boundaries of 𝑆𝑥(𝑡𝑘) in (24).
• Event 4: |𝒆𝑖| ≤ 𝑾 𝑖 is about to be violated.
• Event 5: |�̇�𝑖| ≤ 𝑽 𝑖 is about to be violated.
• Event 6: the state of (11) reaches the boundaries of 𝑆𝑦,𝑖(𝑡𝑘) in

(25).
• Event 7: 𝜕𝑏(𝒙,𝒚𝑖)

𝜕�̄� 𝑔𝑗 (�̄�), 𝑗 ∈ {1,… , 𝑞} changes sign for 𝑡 > 𝑡𝑘
compared to the sign it had at 𝑡𝑘.

In other words, the next time instant 𝑡𝑘+1, 𝑘 = 1, 2… to solve the
P (34) is determined by:

𝑡𝑘+1 = min {𝑡 > 𝑡𝑘 ∶ |𝒆𝑥(𝑡)| = 𝒘 or |�̇�𝑥(𝑡)| = 𝝂

or |�̄�(𝑡) − �̄�(𝑡𝑘)| = 𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))) or |𝒆𝑖(𝑡)| = 𝑾 𝑖

or |�̇�𝑖(𝑡)| = 𝑽 𝑖 or
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�

𝑔𝑗 (�̄�), 𝑗 ∈ {1,… , 𝑞} changes sign
(35)
or |�̄�𝑖(𝑡) − �̄�𝑖(𝑡𝑘)| = 𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))), 𝑖 ∈ 𝑆𝑎},
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where 𝑡1 = 0. Events 1, 2, 4, 5, 7 can be detected by direct sen-
sor measurements, while Events 3, 6 can be detected by monitor-
ing the dynamics (10), (11). The magnitude of each component of
𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))),𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))) (as well as other bounds) is
selected to capture a tradeoff between the time complexity and the
conservativeness of this approach: if the magnitude is large, then the
number of events is small but this approach is considerably conserva-
tive as we determine the condition (33) through the minimum values
as in (27)–(32). If 𝒔(⋅),𝑺 𝑖(⋅) are some constants, then the control system
will be too conservative when its state reaches the boundary of the
set 𝐶1 as the states of (10) and (11) change slowly at the boundary.
However, when the system states are far from the boundary of 𝐶1,
i.e., 𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)) takes some large value, this again will make the
control system too conservative if we take 𝒔(⋅),𝑺 𝑖(⋅) as a function of
𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)). Therefore, we wish to truncate both 𝑠(⋅),𝑺 𝑖(⋅) in the form:

𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘))))=
{

𝒔0, if 𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘))))≥𝒔0,
𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))), otherwise. (36)

𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘))))=
{

𝑺0, if 𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘))))≥𝑺0,
𝑺 𝑖(𝛽2(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))), otherwise. (37)

where 𝒔0 ∈ R𝑛,𝑺0 ∈ R𝑛.
Formally, we have the following theorem to show that the satis-

faction of the safety constraint (9) is guaranteed for the real unknown
dynamics under condition (33):

Theorem 2 (Xiao, Belta, and Cassandras (2023)). Given a HOCBF 𝑏(𝒙)
with 𝑚 = 1 as in Definition 4, let 𝑡𝑘+1, 𝑘 = 1, 2… be determined by (35)
with 𝑡1 = 0, and (33) be determined by (27)–(32), respectively. Then,
under Assumptions 1–2, any control 𝒖(𝑡𝑘) that satisfies (33) and updates
the real unknown dynamics and the adaptive dynamics (10) within time
interval [𝑡𝑘, 𝑡𝑘+1) renders the set 𝐶1 forward invariant for the real unknown
dynamics.

Remark 2. We could also consider the minimum value of
𝜕𝑏(𝒚1+𝒆𝑥 ,𝒚2+𝒆𝑖)

𝜕𝒚1
𝑓𝑎(𝒚1)+

𝜕𝑏(𝒚1+𝒆𝑥 ,𝒚2+𝒆𝑖)
𝜕𝒆𝑥

�̇�𝑥+𝛼1(𝑏(𝒚1+𝒆𝑥, 𝒚2+𝒆𝑖))+
𝜕𝑏(𝒚1+𝒆𝑥 ,𝒚2+𝒆𝑖)

𝜕𝒚2

𝑎,𝑖(𝒚2) +
𝜕𝑏(𝒚1+𝒆𝑥 ,𝒚2+𝒆𝑖)

𝜕𝒆𝑖
�̇�𝑖 within the bound 𝒛 ∈ 𝑆(𝑡𝑘) instead of consid-

ering them separately as in (27)–(32). This will be less conservative
(but more computationally expensive) as the constraint (33) is stronger
compared with the CBF constraint (17), and we wish to find the largest
possible value of the left-hand side of (17) that can support Theorem 2.

Events 1 and 2 will be frequently triggered if the modeling of the
adaptive affine dynamics (10) has a large error with respect to the real
dynamics of the control system and the same is true for Events 4 and 5.
Therefore, we would like to model the adaptive affine dynamics (10)
and the adaptive dynamics (11) as accurately as possible in order to
reduce the number of events required to solve the QP (34).

State synchronization and adaptation of dynamics An additional
important step is to synchronize the state of the real unknown dynamics
of the control system with the state of the adaptive affine dynamics in
(10) such that we always have 𝒆𝑥(𝑡𝑘) = 0 and make �̇�𝑥(𝑡𝑘) close to 0.
This is done by setting

�̄�(𝑡𝑘) = 𝒙(𝑡𝑘), (38)

and by updating 𝑓𝑎(�̄�(𝑡)) in the adaptive affine dynamics (10) right after
(𝑡+) an event occurs at 𝑡:

𝑓𝑎(�̄�(𝑡+)) = 𝑓𝑎(�̄�(𝑡−)) + �̇�𝑥(𝑡𝑖). (39)

where 𝑡+, 𝑡− denote instants right after and before 𝑡. In this way, the
dynamics (10) are adaptively updated at each event, i.e., at 𝑡𝑘, 𝑘 =
1, 2,… . Note that we may also update 𝑔𝑎(⋅), which is harder than
updating 𝑓𝑎(⋅) since 𝑔𝑎(⋅) is multiplied by 𝒖 that is to be determined,
i.e., the update of 𝑔𝑎(⋅) will depend on 𝒖. We do not consider the
update of 𝑔𝑎(⋅) in this paper, but it does not diminish the validity of
7

the approach. This possibility is the subject of ongoing work.
Along the same lines, we also synchronize the state of agent 𝑖 ∈ 𝑆𝑎
and (11), by updating ℎ𝑎,𝑖(�̄�𝑖(𝑡)) of the adaptive dynamics (11) right
after an event occurs at 𝑡 (i.e., at 𝑡+):

�̄�𝑖(𝑡𝑘) = 𝒚𝑖(𝑡𝑘), (40)

ℎ𝑎,𝑖(�̄�𝑖(𝑡+)) = ℎ𝑎,𝑖(�̄�𝑖(𝑡−)) + �̇�𝑖(𝑡𝑗 ). (41)

The control obtained by solving a traditional CBF-based QP is Lips-
hitz if there are no control bounds (2) (Morris, Powell, & Ames, 2015).
owever, control bounds exist in our formulation, which is an event-

riggered QP. Even so, the safety is still guaranteed in the proposed
ramework and there exists a minimum inter-event time, as shown next.
y (38) and (39), we have that 𝒆𝑥(𝑡𝑘) = 0 and �̇�𝑥(𝑡𝑘) is close to 0. There
xist lower bounds for the occurrence times of Event 1 and Event 3 (the
ame applies to Events 4 and 6) as the controls are bounded, and they
re determined by the limit values of the component of 𝑓𝑎, 𝑔𝑎 within 𝑋
nd 𝑈 , as well as the real unknown dynamics. Assuming the functions
hat define the real unknown dynamics are Lipschitz continuous, and
he functions 𝑓𝑎, 𝑔𝑎 in (10) are also assumed to be Lipschitz continuous,
t follows that �̇�𝑥 is also Lipschitz continuous since 𝒖 ∈ 𝑈 . Suppose the
argest Lipschitz constant among all the components in �̇� is 𝐿,∀𝒙 ∈ 𝑋,
nd the smallest Lipschitz constant among all the components in ̇̄𝒙 is
̄ ,∀�̄� ∈ 𝑋, then the lower bound time for Event 2 is 𝜈𝑚𝑖𝑛

𝐿−�̄� , where 𝜈𝑚𝑖𝑛 > 0
is the minimum component in 𝝂. Similarly, there is also a lower bound
ime for Events 5 and 7. On the other hand, since the control is constant
n each time interval, and there exists a lower bound for the event
ime, Zeno behavior will not occur. We summarize the event-triggered
ontrol scheme in Alg. 1.
Algorithm 1: Event-triggered CBFs
Input: Measurements 𝒙 and �̇� from the controlled agent,

measurements 𝒚 and �̇�𝑖 from agent 𝑖 ∈ 𝑆𝑎, adaptive affine
model (10), adaptive model (11), settings for QP (34),
𝒘, 𝝂, 𝒔(⋅),𝑾 𝑖,𝑽 𝑖,𝑺(⋅).

Output: Event time 𝑡𝑘, 𝑘 = 1, 2,… and 𝒖∗(𝑡𝑘).
𝑘 = 1, 𝑡𝑘 = 0;
hile 𝑡𝑘 ≤ 𝑇 do

Measure 𝒙 and �̇� from the controlled agent at 𝑡𝑘;
Measure 𝒚 and �̇�𝑖 from agent 𝑖 ∈ 𝑆𝑎 at 𝑡𝑘;
Sync. the state of (10) and the controlled agent by (38), (39);
Sync. the state of (11) and agent 𝑖 by (40),(41);
Evaluate (27)-(32);
Solve the QP (34) at 𝑡𝑘 and get 𝒖∗(𝑡𝑘);
while 𝑡 ≤ 𝑇 do

Apply 𝒖∗(𝑡𝑘) to the controlled agent and (10) for 𝑡 ≥ 𝑡𝑘;
Measure 𝒙 and �̇� from the controlled agent;
Measure 𝒚 and �̇�𝑖 from agent 𝑖 ∈ 𝑆𝑎;
Evaluate 𝑡𝑘+1 by (35);
if 𝑡𝑘+1 is found with 𝜀 > 0 error (i.e., the states reach the
bounds with 𝜀 error in (35)) then
𝑘 ← 𝑘 + 1, break;

end
end

end

High-relative-degree constraints In the case of high-relative-degree
safety constraints, we have to use HOCBFs instead of CBFs to enforce
them. The event-triggered framework for unknown dynamics is sim-
ilar to the case of relative-degree-one safety constraints. Please refer
to Xiao, Belta, and Cassandras (2023) for more details regarding the
high-relative-degree case. The measurement uncertainties are more
challenging to deal with since higher derivatives of 𝒙 and 𝒚𝑖 are
involved in HOCBFs.
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5.2. Model-free methods for unknown dynamics

In this subsection, we consider the case where the adaptive dynam-
ics (11) are not necessary for all other agents, but the adaptive affine
dynamics (10) are still needed for the ego agent. A model-free method
for the ego agent as well is a promising future direction to pursue. The
decentralized optimal control for the ego agent is considered in this
case, with the event-triggered CBF framework becoming simpler than
that in the last section, as shown in the sequel.

Since 𝒆𝑖 = 𝒚𝑖 − �̄�𝑖, (15) can be rewritten in the form:
𝑑𝑏(�̄�+𝒆𝑥, 𝒚𝑖)

𝑑𝑡
=
𝜕𝑏(�̄�+𝒆𝑥, 𝒚𝑖)

𝜕�̄�
̇̄𝒙+
𝜕𝑏(�̄�+𝒆𝑥, 𝒚𝑖)

𝜕𝒆𝑥
�̇�𝑥

+
𝜕𝑏(�̄�+𝒆𝑥, 𝒚𝑖)

𝜕𝒚𝑖
�̇�𝑖,

(42)

here 𝒚𝑖 and �̇�𝑖 are directly obtained from sensor measurements. Sim-
lar to (17), combining (42), (10) and (16), we get the CBF constraint
hat guarantees (9):
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�

𝑓𝑎(�̄�) +
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�

𝑔𝑎(�̄�)𝒖 +
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕𝒆𝑥

�̇�𝑥

+
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕𝒚𝑖

�̇�𝑖 + 𝛼1(𝑏(𝒙, 𝒚𝑖)) ≥ 0.
(43)

In the event-triggered control framework, we formulate the CBF-
based problem as in (19) by replacing (17) with (43). In addition to
defining the bounds for 𝑒𝑥,𝑗 and �̇�𝑥,𝑗 as in (21) and the bound for the
state bound for �̄� as in the set (24), we only need to define bounds for
𝒚𝑖, �̇�𝑖 in the form:

|𝒚𝑖| ≤ 𝑾 𝑖, |�̇�𝑖| ≤ 𝑽 𝑖, 𝑖 ∈ 𝑆𝑎. (44)

here the inequalities are interpreted componentwise, and 𝑾 𝑖 ∈
𝑛
>0,𝑽 𝑖 ∈ R𝑛>0. Note that the above bounds can also be defined in the
daptive form as in (23) by making the bound values dependent on the
alue of the CBF.

Let 𝒛 ∶= (𝒚1, 𝒆𝑥, �̇�𝑥, 𝒚𝑖, �̇�𝑖), where 𝒚1 ∈ 𝑆𝑥(𝑡𝑘). We then define an
verall set 𝑆(𝑡𝑘):

(𝑡𝑘) = {𝒛 ∈ R5𝑛 ∶ 𝒚1 ∈ 𝑆𝑥(𝑡𝑘), |𝒆𝑥| ≤ 𝒘,

|�̇�𝑥| ≤ 𝝂, |𝒚𝑖| ≤ 𝑾 𝑖, |�̇�𝑖| ≤ 𝑽 𝑖,

(𝒚1 + 𝒆𝑥, 𝒚𝑖) ∈ 𝐶1, 𝑖 ∈ 𝑆𝑎}.
(45)

ompared to 𝒛 in (26), the dimension of 𝒛 is now decreased by 𝑛.
Next, we can find the minimum values 𝑏𝑓𝑎 ,𝑚𝑖𝑛(𝑡𝑘), 𝑏𝛼1 ,𝑚𝑖𝑛(𝑡𝑘), 𝑏𝑒,𝑚𝑖𝑛(𝑡𝑘)

f 𝜕𝑏(�̄�+𝒆𝑥 ,𝒚𝑖)
𝜕�̄� 𝑓𝑎(�̄�), 𝛼1(𝑏(𝒙, 𝒚𝑖)),

𝜕𝑏(𝒙,𝒚𝑖)
𝜕𝒆𝑥

�̇�𝑥, respectively, for the preceding
time interval [𝑡𝑘, 𝑡𝑘+1] that satisfy 𝒛 ∈ 𝑆(𝑡𝑘) starting at time 𝑡𝑘 as in (27)–
(29). The minimum value 𝑏𝑦𝑖 ,𝑚𝑖𝑛(𝑡𝑘) ∈ R of 𝜕𝑏(𝒙,𝒚𝑖)

𝜕𝒚𝑖
�̇�𝑖, 𝑖 ∈ 𝑆𝑎 is given by

𝑦𝑖 ,𝑚𝑖𝑛(𝑡𝑘) = min
𝒛∈𝑆(𝑡𝑘)

𝜕𝑏(𝒚1 + 𝒆𝑥, 𝒚𝑖)
𝜕𝒚𝑖

�̇�𝑖, (46)

he limit value of the coefficient of the control in the CBF constraint is
lso found as in (32).

Finally, the condition that guarantees the satisfaction of (43) in the
ime interval (𝑡𝑘, 𝑡𝑘+1] is given by

𝑓𝑎 ,𝑚𝑖𝑛(𝑡𝑘) + 𝑏𝑔𝑎 ,𝑙𝑖𝑚(𝑡𝑘)𝒖(𝑡𝑘) + 𝑏𝑒𝑥 ,𝑚𝑖𝑛(𝑡𝑘)

+𝑏𝑦𝑖 ,𝑚𝑖𝑛(𝑡𝑘) + 𝑏𝛼1 ,𝑚𝑖𝑛(𝑡𝑘) ≥ 0.
(47)

The above condition is added to the CBF-based problem (34) by replac-
ing (33) with (47).

Triggering events: Based on the above, we define six events that
determine the condition that triggers an instance of solving the QP (34)
(replacing (33) with (47)):

• Event 1: |𝒆𝑥| ≤ 𝒘 is about to be violated.
• Event 2: |�̇�𝑥| ≤ 𝝂 is about to be violated.
• Event 3: the state of (10) reaches the boundaries of 𝑆𝑥(𝑡𝑘) in (24).
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• Event 4: |𝒚𝑖| ≤ 𝑾 𝑖 is about to be violated.
• Event 5: |�̇�𝑖| ≤ 𝑽 𝑖 is about to be violated.
• Event 6: 𝜕𝑏(𝒙,𝒚𝑖)

𝜕�̄� 𝑔𝑗 (�̄�), 𝑗 ∈ {1,… , 𝑞} changes sign for 𝑡 > 𝑡𝑘
compared to the sign it had at 𝑡𝑘.

ote that Event 6 is not necessary since it would not affect the validity
f the condition (47). We add this event here since we observe that the
ystem behavior usually changes (e.g., from acceleration to brake in a
ehicle) when the sign of the control coefficient in a CBF changes.

In other words, the next time instant 𝑡𝑘+1, 𝑘 = 1, 2… to solve the
P is determined by:

𝑘+1 = min {𝑡 > 𝑡𝑘 ∶ |𝒆𝑥(𝑡)| = 𝒘 or |�̇�𝑥(𝑡)| = 𝝂 or |𝒚𝑖(𝑡)| = 𝑾 𝑖

or |�̄�(𝑡) − �̄�(𝑡𝑘)| = 𝒔(𝛽1(𝑏(𝒙(𝑡𝑘), 𝒚𝑖(𝑡𝑘)))) or |�̇�𝑖(𝑡)| = 𝑽 𝑖

or
𝜕𝑏(𝒙, 𝒚𝑖)
𝜕�̄�

𝑔𝑗 (�̄�), 𝑗 ∈ {1,… , 𝑞} changes sign, 𝑖 ∈ 𝑆𝑎},

(48)

where 𝑡1 = 0.
We can then prove the safety guarantees under the proposed robust

framework as in Theorem 2. We only need to synchronize the state and
update the dynamics for the ego agent as in (38) and (39). An algorithm
similar to Alg. 1 can also be obtained to summarize process.

5.3. Human in the loop

Our robust control framework is a natural fit for incorporating
human agents in the loop of multi-agent systems, since we do not need
to know the dynamics of those agents or the control policy they adopt.
Human agents may control any one or more agents 𝑖 ∈ 𝑆𝑎. We may
just treat those human agents as ‘‘blackbox’’ models and policies, and
use sensors to measure system states (and their derivatives) required in
the event-triggered CBFs that enforce safety. We note that the common
interpretation of ‘‘human in the loop’’ control is to view a human as par-
ticipating in an otherwise automated control system. Our consideration
is a bit different because our focus is on multi-agent systems, in which
case a natural point of view is to consider some agents as uncontrollable
‘‘humans’’ and others as cooperating automated controllable ones. The
human agents participate in the system-wide control loop in which the
goal is to achieve optimal and safe system-wide (social) operation. The
autonomous agents need to interact with human-controlled agents in
a safety-guaranteed way using the proposed event-triggered CBF-based
method.

A major challenge in the proposed framework involves the sensor
measurements it requires since it is usually difficult to measure the
derivatives of system states, especially for high relative degree safety
constraints 𝑏(𝒙, 𝒚𝑖) ≥ 0 that are enforced by HOCBFs in the following
form:
𝜕𝑚𝑏(𝒙, 𝒚𝑖)
𝜕�̄�𝑚

𝑓 [𝑚]
𝑎 (�̄�) +

𝜕𝑚𝑏(𝒙, 𝒚𝑖)
𝜕�̄�𝑚

𝑓 [𝑚−1]
𝑎 (�̄�)𝑔[1]𝑎 (�̄�)𝒖

+
𝜕𝑚𝑏(𝒙, 𝒚𝑖)
𝜕𝒆𝑚𝑥

𝒆(𝑚)𝑥 +
𝜕𝑚𝑏(𝒙, 𝒚𝑖)
𝜕𝒆𝑚𝑖

𝒚(𝑚)𝑖

+𝑅(𝑏(𝒙, 𝒚𝑖)) + 𝛼𝑚(𝜓𝑚−1(𝒙, 𝒚𝑖)) ≥ 0,

(49)

where 𝜕𝑚𝑏(𝒙,𝒚𝑖)
𝜕�̄�𝑚 𝑓 [𝑚]

𝑎 (�̄�) denotes the 𝑚 times partial derivative of the func-
ion 𝑏(𝒙, 𝒚𝑖) w.r.t. �̄� along 𝑓𝑎(�̄�) (a similar definition to the Lie derivative
n Definition 4), and we have similar definitions for 𝜕𝑚𝑏(𝒙,𝒚𝑖)

𝜕�̄�𝑚 𝑓 [𝑚−1]
𝑎 𝑔[1]𝑎 (�̄�)𝒖

The above constraint would also involve human control if agent 𝑖
is a human controlled agent and if we model such an agent using
adaptive affine dynamics similar to (10). In this way, we can consider
safe human-autonomous system interactions. In this work, we do
not explicitly study or infer human control policies, thus, we treat
human-controlled agents as having unknown dynamics. Further studies
regarding safe human-autonomous system interactions (such as in a
game-theoretic manner) are needed in future work.

In (49), 𝑅(𝑏(𝒙, 𝒚𝑖)) also contains the remaining time derivatives of 𝒆𝑥
and 𝒚𝑖 with degree less than 𝑚, while 𝒆(𝑗)𝑥 = 𝒙(𝑗)− �̄�(𝑗), 𝒚(𝑗)𝑖 , 𝑗 ∈ {1,… , 𝑚}
is the 𝑗th derivative and is evaluated online by 𝒙(𝑗) (from a sensor)
of the real system and by 𝒚(𝑗) (from a sensor) of system 𝑖 ∈ 𝑆 and
𝑖 𝑎
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�̄�(𝑗)𝑖 of (11), respectively. Those derivatives are in general intractable
to estimate. In order to address this, we propose methods for relative
degree reduction in the CBF method as a potential research direction,
as discussed in the next subsection.

5.4. CBF relative degree reduction

As mentioned in the last subsection, when dealing with high relative
degree safety constraints, we have to differentiate the safety constraints
more than once in order to get the control in the corresponding
derivative. As a result, high order derivatives of 𝒚𝑖 are also involved.
This makes the sensor measurements intractable in most cases, as the
measurement of high order derivatives of system states is extremely
difficult in practice. However, we can avoid this problem through
systematic ways to achieve relative degree reduction in CBFs. In other
words, we can transform the relative degree of a safety constraint to one
by adding an extra term to the safety constraint at the cost of potential
conservativeness.

For instance, we can transform the safety constraint 𝑥 − 𝑥𝑝 ≥ 𝑙0 to
− 𝑥𝑝 ≥ 𝜑𝑣 + 𝑙0 in an adaptive cruise control problem, where double

ntegrator dynamics are considered, and 𝑥, 𝑥𝑝 denotes the along lane
osition of the ego vehicle and its preceding vehicle, 𝑣 denotes the
peed of the ego vehicle, and 𝜑 > 0, 𝑙0 > 0 are constants. In this case,
he transformed safety constraint has relative degree one (while the
riginal safety constraint has relative degree two), and the satisfaction
f the transformed constraint implies the satisfaction of the original
onstraint (as 𝑣 > 0 in general). Through relative degree reduction, we
nly need to measure 𝒚𝑖 and �̇�𝑖, which is much more tractable than the
igh-order case.

Formally, we consider the case where the full dynamics (1) are
nown (this assumption can be relaxed by the proposed event-triggered
BFs). In the HOCBF method, we directly define 𝑏(𝒙, 𝒚𝑖) in (9) as a
OCBF in order to enforce this safety constraint. Here, instead, we
efine a transformation function 𝑇𝑉 ∶ R𝑛 → R in the form:

𝑉 (𝒙, 𝒚𝑖) = 𝑏(𝒙, 𝒚𝑖) − 𝑉 (𝒙), (50)

here 𝑉 ∶ R2𝑛 → R is a positive definite function in the form:

(𝒙) = 𝒙𝑇 𝑃𝒙, (51)

here 𝑃 ∈ R𝑛×𝑛 is positive definite. 𝑉 (𝒙) has relative degree one since
ll the state variables in 𝒙 show up. We may define 𝑉 (𝒙) to be any
ther continuously differentiable function that has relative degree one,
nd use a CBF to ensure it is non-negative. For simplicity, we usually
onsider it to be quadratic.

Then, we can define 𝑇𝑉 (𝒙, 𝒚𝑖) as a CBF since its relative degree is
lso only one due to the transformation (50). We may define 𝑉 (𝒙) to be
ingular-free, i.e. 𝐿𝑔𝑉 (𝒙) ≠ 0 for all 𝒙 such that 𝑏(𝒙, 𝒚𝑖) = 0, in the form
(𝒙) = (𝒙 + 𝑐)𝑇 𝑃 (𝒙 + 𝑐), where 𝑐 ∈ R is properly chosen to satisfy this

ondition. This shows the advantage of using a transformation method
n enforcing safety, as it gives us the freedom to design the function
(𝒙) such that the singularity problem can be avoided, something that

s hard to address in the original CBF/HOCBF method.
The CBF constraint corresponding to the transformation 𝑇𝑉 (𝒙, 𝒚𝑖) is

hen given by:

𝑓𝑇𝑉 (𝒙, 𝒚𝑖) + 𝐿𝑔𝑇𝑉 (𝒙, 𝒚𝑖)𝒖 +
𝜕𝑇𝑉 (𝒙, 𝒚𝑖)

𝜕𝒚𝑖
�̇�𝑖

+𝛼(𝑇𝑉 (𝒙, 𝒚𝑖)) ≥ 0,
(52)

here 𝛼(⋅) is a class  function. The above equation can ensure
𝑉 (𝒙, 𝒚𝑖) ≥ 0 by Theorem 1. Since 𝑉 (𝒙) ≥ 0, it follows that 𝑏(𝒙, 𝒚𝑖) ≥ 0

is guaranteed.
Conservativeness. One obvious problem with the transformation

approach above is that the system could be too conservative, as
𝑏(𝒙, 𝒚𝑖) ≥ 𝑉 (𝒙) is always true, especially when the value of 𝑉 (𝒙) is
large. One approach to address this problem is to define 𝑉 (𝒙) as a
CLF such that it decreases to a small value when the system near
9

Fig. 3. The merging problem, a collision may happen at the merging point.

the safe set boundary. Another way to address this problem is by
introducing a penalty on the function 𝑉 (𝒙), similar to the concept of
adaptive CBFs (Xiao, Belta, & Cassandras, 2021a). All these ideas and
resulting methodologies are open and challenging questions that are
worth investigating.

6. Applications

In this section, we consider two classes of problems where the
proposed approach is applied: a decentralized traffic merging control
problem, and a lane merging control problem in highway driving with
humans in the loop. All computations and simulations were conducted
in MATLAB. We used quadprog to solve the quadratic programs and
ode45 to integrate the dynamics.

6.1. Decentralized traffic merging in a bottleneck area

The merging problem arises when traffic must be joined from two
roads, usually associated with a main lane and a merging lane as shown
in Fig. 3. We consider the case where all traffic consists of vehicles
randomly arriving at the two lanes joined at the Merging Point (MP)
𝑀 . The segment from the origin 𝑂 or 𝑂′ to the merging point 𝑀 has

length 𝐿 for both lanes, and is called the control zone. In order
o share or obtain other vehicle information, each vehicle can use its
nboard sensors or communicate with a coordinator associated with
he MP whose main function is to collect and share vehicle states. A
ore detailed merging problem setup is given in Xiao and Cassandras

2021). In contrast to the problem considered in Xiao and Cassandras
2021) where the vehicle dynamics are assumed known, in real traffic
erging each vehicle does not know the dynamics of other vehicles

nd may also not have accurate dynamics of its own. Therefore, the
afe merging constraint becomes critical and hard to be guaranteed.

The real dynamics for 𝑖 are unknown to the controller:

�̇�𝑖(𝑡) = 𝜎𝑖,1(𝑡) + 𝑣𝑖(𝑡), �̇�𝑖(𝑡) = 𝜎𝑖,2(𝑡) + 𝜎𝑖,3(𝑡)𝑢𝑖(𝑡), (53)

here 𝒙𝑖 = (𝑥𝑖, 𝑣𝑖) and 𝑥𝑖(𝑡) denotes the along lane distance of vehicle
with respect to the origin, 𝑣𝑖(𝑡) denotes its the velocity, and 𝑢(𝑡) is its
ontrol (acceleration). 𝜎1(𝑡), 𝜎2(𝑡), 𝜎3(𝑡) denote three random processes
hose pdf’s have finite support.

As in Xiao and Cassandras (2021), we consider the following double
ntegrator as the initial adaptive model:

̇̄ 𝑖(𝑡) = ℎ𝑖,1(𝑡) + �̄�𝑖(𝑡), ̇̄𝑣𝑖(𝑡) = ℎ𝑖,2(𝑡) + 𝑢𝑖(𝑡), (54)

here �̄�𝑖 = (�̄�𝑖, �̄�𝑖). ℎ𝑖,1(𝑡) ∈ R, ℎ𝑖,2(𝑡) ∈ R denote the two adaptive terms
n (39), ℎ𝑖,1(0) = 0, ℎ𝑖,2(0) = 0.

The objective is to jointly minimize the travel time and energy
onsumption for each vehicle 𝑖 in the form ∫

𝑡𝑚𝑖
𝑡0𝑖

(

𝛽 + 𝑢2𝑖 (𝑡)
)

𝑑𝑡, where
0, 𝑡𝑚 denote the arrival time of vehicle 𝑖 at the origin and at the merging
𝑖 𝑖
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)

𝑥

𝑒

point 𝑀 , respectively. 𝛽 > 0 is a weight parameter that captures
the time-energy consumption trade-off. The rear-end safety constraint
between vehicle 𝑖 and its preceding vehicle 𝑖𝑝 is similar to the ACC
example. For simplicity, we only consider the safe merging constraints
for two CAVs 𝑖, 𝑖 − 1 coming from different roads:

𝑥𝑖−1(𝑡𝑚𝑖 ) − 𝑥𝑖(𝑡
𝑚
𝑖 ) ≥ 𝜑𝑣𝑖(𝑡𝑚𝑖 ) + 𝑙0 (55)

where 𝜑 > 0 is the headway time and 𝑙0 ≥ 0. For simplicity, we consider
high speed traffic merging, and take 𝑙0 = 0. In order to use the CBF
method to implement the above safe merging constraint, we convert it
to a continuously differentiable constraint:

𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡) ≥ 𝜑
𝑥𝑖(𝑡)
𝐿

𝑣𝑖(𝑡),∀𝑡 ∈ [𝑡0𝑖 , 𝑡
𝑚
𝑖 ], (56)

where 𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡) ≥ 0 when 𝑥𝑖(𝑡) = 0, which means the two vehicles
𝑖 − 1, 𝑖 are allowed arrive at the same time at the origins 𝑂 and 𝑂′,
respectively. Moreover, note that 𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡) ≥ 𝜑𝑣𝑖(𝑡) when 𝑥𝑖(𝑡) = 𝐿,
which satisfies the safe merging constraint (55) when 𝑖 arrives at the
merging point 𝑀 (𝑖 − 1 has already passed the merging point).

We take 𝑖 as the ego vehicle in the merging problem. We assume
vehicle 𝑖−1 is under unconstrained optimal control (Xiao & Cassandras,
2021), and vehicle 𝑖 takes the unconstrained optimal control as a
reference. Vehicle 𝑖 does not know its own dynamics, as well as those of
𝑖−1. In order to implement the continuous version of the safe merging
constraint (56), we define a CBF 𝑏(𝒙𝑖,𝒙𝑖−1) = 𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡) − 𝜑

𝑥𝑖(𝑡)
𝐿 𝑣𝑖(𝑡).

The relative degree of this CBF is only one with respect to (53). We
choose 𝛼1(𝑏(𝒙𝑖,𝒙𝑖−1)) = 𝑏(𝒙𝑖,𝒙𝑖−1) in Definition 4. The CBF constraint
(5) which in this case is (with respect to the real dynamics (53)):
�̇�(𝒙𝑖,𝒙𝑖−1) + 𝑏(𝒙𝑖,𝒙𝑖−1) ≥ 0. Combining (13), (54) and this constraint,
we have

�̄�𝑖−1 + ℎ𝑖−1,1 + �̇�𝑥𝑖−1 − �̄�𝑖 − ℎ𝑖,1 − �̇�𝑥𝑖
−
𝜑
𝐿
(�̄�𝑖+ℎ𝑖,1+�̇�𝑥𝑖 )(�̄�𝑖+𝑒𝑣𝑖 ) −

𝜑
𝐿
(�̄�𝑖+𝑒𝑥𝑖 )(𝑢𝑖+ℎ𝑖,2+�̇�𝑣𝑖 )

+�̄�𝑖−1 + 𝑒𝑥𝑖−1 − �̄�𝑖 − 𝑒𝑥𝑖 −
𝜑
𝐿
(�̄�𝑖 + 𝑒𝑥𝑖 )(�̄�𝑖 + 𝑒𝑣𝑖 ) ≥ 0,

(57)

where 𝑒𝑥𝑖−1 = 𝑥𝑖−1 − �̄�𝑖−1, 𝑒𝑥𝑖 = 𝑥𝑖 − �̄�𝑖, 𝑒𝑣𝑖 = 𝑣𝑖 − �̄�𝑖.
The vehicles may arrive at the origins at the same time, i.e., 𝑏(𝒙𝑖,𝒙𝑖−1

may be initially close to 0. Thus, we take 𝒔(⋅),𝑺 𝑖(⋅) in (23) to be some
constant vectors. Similar to (23), we consider the state and bound the
errors at step 𝑡𝑘, 𝑘 = 1, 2… for the above CBF constraint in the form:

�̄�𝑖−1(𝑡𝑘) − 𝑆1 ≤ �̄�𝑖−1 ≤ �̄�𝑖−1(𝑡𝑘) + 𝑆1,

�̄�𝑖−1(𝑡𝑘) − 𝑆2 ≤ �̄�𝑖−1 ≤ �̄�𝑖−1(𝑡𝑘) + 𝑆2,

�̄�𝑖(𝑡𝑘) − 𝑠1 ≤ �̄�𝑖 ≤�̄�𝑖(𝑡𝑘) + 𝑠1, �̄�𝑖(𝑡𝑘) − 𝑠2 ≤ �̄�𝑖 ≤ �̄�𝑖(𝑡𝑘) + 𝑠2,

|𝑒𝑥𝑖−1 | ≤ 𝑊 , |�̇�𝑥𝑖−1 | ≤ 𝑉 ,

|𝑒𝑥𝑖 | ≤ 𝑤1, |�̇�𝑥𝑖 | ≤ 𝜈1, |𝑒𝑣𝑖 | ≤ 𝑤2, |�̇�𝑣𝑖 | ≤ 𝜈2

(58)

where 𝑆1 > 0, 𝑆2 > 0, 𝑠1 > 0, 𝑠2 > 0,𝑊 > 0, 𝑤1 > 0, 𝑤2 > 0, 𝑉 > 0, 𝜈1 >
0, 𝜈2 > 0.

Motivated by (38)–(41), we synchronize the state and update the
adaptive dynamics (54) at step 𝑡𝑘, 𝑘 = 1, 2… in the form:

�̄�𝑖−1(𝑡𝑘) = 𝑥𝑖−1(𝑡𝑘), �̄�𝑖−1(𝑡𝑘) = 𝑣𝑖−1(𝑡𝑘), �̄�𝑖(𝑡𝑘) = 𝑥𝑖(𝑡𝑘),

�̄�𝑖(𝑡𝑘) = 𝑣𝑖(𝑡𝑘), ℎ𝑖−1,1(𝑡+)=ℎ𝑖−1,1(𝑡−)+
𝑘
∑

𝑖=0
�̇�𝑥𝑖−1 (𝑡𝑖),

ℎ𝑖,1(𝑡+)=ℎ𝑖,1(𝑡−)+
𝑘
∑

𝑖=0
�̇�𝑥𝑖 (𝑡𝑖), ℎ𝑖,2(𝑡

+)=ℎ𝑖,2(𝑡−)+
𝑘
∑

𝑖=0
�̇�𝑣𝑖 (𝑡𝑖),

(59)

where �̇�𝑥𝑖−1 (𝑡𝑘) = �̇�𝑖−1(𝑡𝑘)− (�̄�𝑖−1(𝑡𝑘)+ℎ𝑖−1,1(𝑡𝑘)), �̇�𝑥𝑖 (𝑡𝑘) = �̇�𝑖(𝑡𝑘)− (�̄�𝑖(𝑡𝑘)+
ℎ𝑖,1(𝑡𝑘)), �̇�𝑣𝑖 (𝑡𝑘) = �̇�𝑖(𝑡𝑘) − (𝑢𝑖(𝑡−𝑘 ) + ℎ𝑖,2(𝑡𝑘)), 𝑢(𝑡

−
𝑘 ) = 𝑢(𝑡𝑘−1) and 𝑢(𝑡0) = 0.

̇ 𝑖−1(𝑡𝑘), �̇�𝑖(𝑡𝑘), �̇�𝑖(𝑡𝑘) are estimated by a sensor that measures the real
dynamics (53) of 𝑖 − 1, 𝑖 at time 𝑡𝑘.

Then, we can find the limit values as in (27)–(32), solve the QP
(34) at each time step 𝑡𝑘, 𝑘 = 1, 2… , and evaluate the next time step
𝑡𝑘+1 by (35) afterwards. In the evaluation of 𝑡𝑘+1, we have 𝑒𝑥𝑖−1 =
𝑥 − �̄� , 𝑒 = 𝑥 − �̄� , 𝑒 = 𝑣 − �̄� , �̇� = �̇� − (�̄� + ℎ ),
10

𝑖−1 𝑖−1 𝑥𝑖 𝑖 𝑖 𝑣𝑖 𝑖 𝑖 𝑥𝑖−1 𝑖−1 𝑖−1 𝑖−1,1
Fig. 4. Comparison between the proposed event-driven method and the time-driven
method in guaranteeing the satisfaction of the safe merging constraint for vehicles
𝑖, 𝑖 − 1. 𝑏(𝒙𝑖 ,𝒙𝑖−1) ≥ 0 denotes the forward invariance of 𝐶1, i.e., the satisfaction of the
safe merging constraint (under the event driven method). In the small-bounds case, all
the state and error bound values are 20% of the ones in the large-bounds case (default
values).

̇𝑥𝑖 = �̇�𝑖 − (�̄�𝑖 + ℎ𝑖,1), �̇�𝑣𝑖 = �̇�𝑖 − (𝑢𝑖 + ℎ𝑖,2), where 𝑥𝑖−1, 𝑥𝑖, 𝑣𝑖, �̇�𝑖−1, �̇�𝑖, �̇�𝑖
are estimated by a sensor that measures the real dynamics of 𝑖 − 1, 𝑖,
and 𝑢(𝑡𝑘) is already obtained by solving the QP (34) and is held as a
constant until we find 𝑡𝑘+1. The optimizations (27)–(32) are NLPs due
to the nonlinearity of the CBF 𝑏(𝒙𝑖,𝒙𝑖−1). Each NLP can be solved with a
computational time of about 0.03𝑠 using fmincon in MATLAB, and each
QP can be solved within 0.01𝑠 using quadprog in MATLAB (Intel(R)
Core(TM) i7-8700 CPU @3.2GHz×2).

In the simulation, the initial speeds of vehicles 𝑖 − 1, 𝑖 are 18 m∕s,
20 m∕s with arrival times 0𝑠, 1𝑠 at the origin 𝑂 or 𝑂′, respectively.
Other simulation parameters are 𝛽 = 2.666, 𝜑 = 1.8𝑠, 𝐿 = 400 m, 𝑆1 =
0.5 m, 𝑆2 = 0.2 m∕s, 𝑠1 = 0.5 m, 𝑠2 = 0.2 m∕s,𝑊 = 0.6 m, 𝑉 =
0.3 m∕s, 𝑤1 = 0.6 m, 𝑤2 = 0.3 m∕s, 𝜈1 = 0.3 m∕s, 𝜈2 = 0.2 m∕s2.

The pdf’s of 𝜎1(𝑡), 𝜎2(𝑡), 𝜎3(𝑡) are uniform over the intervals
[−2, 2] m∕s, [−0.2, 0.2] m∕s2, [0.9, 1.1], respectively. The sensor sampling
rate is 100 Hz. We compare the proposed event-driven framework with
the time-driven approach (𝛥𝑡 = 0.02𝑠) that takes double integrator as
vehicle dynamics.

The simulation results are shown in Fig. 4. Note that, in order
to improve the computation efficiency while staying close to optimal
solutions, we employed the joint optimal control and barrier function
method. As expected, the safe merging constraint between 𝑖 and 𝑖 − 1
is not satisfied with the time-driven method (blue curves shown in
Fig. 4) due to the unknown dynamics of both 𝑖 and 𝑖 − 1. The safe
merging constraint for 𝑖 and 𝑖 − 1 is guaranteed when using the event-
driven approach, as the red curves shown in Fig. 4, but vehicle 𝑖 tends
to be conservative when it approaches the merging point. In order
to alleviate this conservativeness, we consider a small-bound case in
which the state and error bound values are 20% of the default values,
as the green curves shown in Fig. 4.

6.2. Lane changing control with human in the loop

The highway lane-changing scenario (more details are given in Li,
Cassandras, and Xiao (2023)) is shown in Fig. 5, where the green
vehicles 1 and 𝐶 are assumed to be cooperating Connected Automated
Vehicles (CAVs), the red vehicle 𝐻 is an uncontrollable Human Driven
Vehicle (HDV), and the gray vehicle 𝑈 is considered as a dynamic
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Fig. 5. The basic lane-changing maneuver process. The red vehicle is an HDV, green
vehicles are CAVs, and the gray vehicle is a slow-moving and uncontrollable vehicle.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

obstacle moving at a slower speed than CAVs. A lane-changing maneu-
ver is triggered by 𝐶 when an obstacle ahead is detected. In general,
such a maneuver can be initiated at any arbitrary time set by 𝐶.
The framework proposed in this paper can be used in any conflict
area involving vehicle interactions, but we limit ourselves to this
lane-changing setting which we view as the most challenging among
them. We aim to minimize the maneuver time and energy expended,
while alleviating any disruption to the fast lane traffic flow. Moreover,
considering the presence of HDVs, 𝐶 also needs to be aware of the
behavior of its surrounding HDVs in order to guarantee safety.

Vehicle Dynamics. The dynamics and control policy of the HDV
are unknown in this case. Assume the slow vehicle 𝑈 keeps traveling
in the slow lane with a constant speed 𝑣𝑈 . For each CAV in Fig. 5,
indexed by 𝑖 ∈ {1, 𝐶}, its dynamics take the form

⎡

⎢

⎢

⎢

⎢

⎣

�̇�𝑖
�̇�𝑖
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⎥

⎥

⎥

⎥
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⏟⏟⏟
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⎢
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⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
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⎢
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1 0
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⎥
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(60)

where 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝜃𝑖(𝑡), 𝑣𝑖(𝑡) represent the current longitudinal position,
lateral position, heading angle, and speed, respectively. 𝑢𝑖(𝑡) and 𝜙𝑖(𝑡)
are the acceleration and steering angle (controls) of vehicle 𝑖 at time 𝑡,
respectively, 𝑔(𝒙𝑖(𝑡)) = [𝑔𝑢(𝒙𝑖(𝑡)), 𝑔𝜙(𝒙𝑖(𝑡))]. The maneuver starts at time
𝑡0 and ends at time 𝑡𝑓 when 𝐶 has completely switched to the target
lane. The control input and speed for all vehicles are constrained as
follows:
𝒖𝑖min

≤ 𝒖𝑖(𝑡) ≤ 𝒖𝑖max
, 𝑣𝑖min

≤ 𝑣𝑖(𝑡) ≤ 𝑣𝑖max
, 𝑖 ∈ {1, 𝐶}, (61)

where 𝒖𝑖min
, 𝒖𝑖max

∈ R2 denote the minimum and maximum control
bounds for vehicle 𝑖, respectively. 𝑣𝑖min

> 0 and 𝑣𝑖max
> 0 are vehicle

𝑖’s allowable minimum and maximum speed. Setting 𝑙 as the width of
the road, 𝑦 = 0 axis is the center of the slow lane in Fig. 5, we have
𝑦𝐶 (𝑡0) = 0, and the lateral positions of vehicles satisfy

− 𝑙
2
≤ 𝑦𝑖(𝑡) ≤

3
2
𝑙, 𝑖 ∈ {1, 𝐶}. (62)

Safety Constraints. Similar to the longitudinal safe distance de-
scribed in Xiao, Cassandras, and Belta (2023), we define an ellipsoidal
safe region 𝑏𝑖,𝑗 (𝒙𝑖,𝒙𝑗 ) for vehicles 𝑖 and 𝑗 during the entire maneuver:

𝑏𝑖,𝑗 ∶=
(𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡))2

(𝑎𝑖𝑣𝑖(𝑡))2
+

(𝑦𝑗 (𝑡) − 𝑦𝑖(𝑡))2

(𝑏𝑖𝑣𝑖(𝑡))2
− 1 ≥ 0, (63)

where 𝑗 is 𝑖’s neighboring vehicle, 𝑎𝑖, 𝑏𝑖 are weights adjusting the length
of the major and minor axes of the ellipse shown in Fig. 6, and the
size of the safe region depends on speed, which is one of the relative
degree reduction methods. Otherwise, the relative degree of the safety
constraint is two, and we need to measure the second derivative of the
positions. Note that 𝑏𝑖,𝑗 is specified from the center of vehicle 𝑖 to the
center of 𝑗. In other words, the center of vehicle 𝑗 must remain outside
of 𝑖’s safe region during the entire maneuver. Defining an elliptical
safe region considers the 2D safe distance between two vehicles. Since
(63) depends on speed, its CBF constraint only has relative degree one
11
Fig. 6. Definition of an elliptical safe region.

(i.e., we only need to take the derivative of the safety constraint along
the dynamics once until the control explicitly shows in the derivative),
implying lower complexity in CBF design.

Therefore, CAV 𝑖 ∈ {1, 𝐶} in Fig. 5 must satisfy the following
constraints to guarantee safety during any lane change maneuver:

𝑏𝐶,𝐻 =
(𝑥𝐶 (𝑡)−𝑥𝐻 (𝑡))2

𝑎2𝐶
+
(𝑦𝐶 (𝑡)−𝑦𝐻 (𝑡))2

𝑏2𝐶
− 𝑣2𝐶 (𝑡) ≥ 0, (64a)

𝑏1,𝐶 =
(𝑥1(𝑡)−𝑥𝐶 (𝑡))2

𝑎21
+
(𝑦1(𝑡)−𝑦𝐶 (𝑡))2

𝑏21
− 𝑣21(𝑡) ≥ 0, (64b)

𝑏1,𝐻 =
(𝑥1(𝑡)−𝑥𝐻 (𝑡))2

𝑎21
+
(𝑦1(𝑡)−𝑦𝐻 (𝑡))2

𝑏21
− 𝑣21(𝑡) ≥ 0, (64c)

𝑏𝑈,𝐶 =
(𝑥𝑈 (𝑡)−𝑥𝐶 (𝑡))2

𝑎2𝐶
+
(𝑦𝑈 (𝑡)−𝑦𝐶 (𝑡))2

𝑏2𝐶
− 𝑣2𝐶 (𝑡) ≥ 0, (64d)

Each constraint in (64) ensures that the safe region of CAVs 1 or 𝐶 is
not invaded by surrounding vehicles depicted in Fig. 5. For instance,
(64a) necessitates that CAV 𝐶 maintains a safe distance from the HDV,
such that the HDV remains exterior to the defined elliptical safe region.

Optimal Control Problem Formulation. Our goal is to determine
the optimal control policy for CAV 𝐶 to perform a safe lane change
maneuver. The objective is to jointly minimize 𝐶 ’s energy consumption
and speed deviation from traffic flow while guaranteeing safety. Con-
sidering cooperations between 𝐶 and 1, the joint cooperative optimal
control problem (OCP) for both CAVs is given by:

min
𝑢𝐶 (𝑡),𝑢1(𝑡),𝑡𝑓 ∫

𝑡𝑓

𝑡0

𝛼𝑢
2
(𝑢2𝐶 (𝑡) + 𝑢

2
1(𝑡))𝑑𝑡 + 𝛼𝑙(𝑦𝐶 (𝑡𝑓 ) − 𝑙)

2

+ 𝛼𝑣[(𝑣𝐶 (𝑡𝑓 ) − 𝑣𝑑 )2 + (𝑣1(𝑡𝑓 ) − 𝑣𝑑 )2] (65)
𝑠.𝑡. (60), (61), (62),

where 𝑣𝑑 denotes the desired speed of CAVs in the fast lane, 𝛼𝑢, 𝛼𝑙 , 𝛼𝑣
are adjustable non-negative (properly normalized) weights for energy,
desired lateral position, and desired speed, respectively. The CAV dy-
namics are given in (60) with state and control limits as in (61) and
(62). Safety distances between all vehicle pairs in Fig. 5 are constrained
through , requiring state knowledge of all vehicles. However, since
HDVs are uncontrollable and unknown to CAVs in actuality, coupling
the unknown HDV states with CAVs in safety constraints (64a) and
(64c) makes (65) directly unsolvable using traditional optimal control
methods. The proposed robust control framework can address this
problem.

We test our framework by allowing human drivers to manually
operate virtual vehicles through a MATLAB interface, and the results
show that CAV 𝐶 can always update its control to avoid collisions and
successfully perform a safe maneuver. Our simulation setting is that of
Fig. 5. Vehicle 𝑈 is assumed to travel with constant speed 𝑣𝑈 = 20 m∕s
all the time (this is not needed in the overall approach). The allowable
speed range for CAVs is 𝑣 ∈ [15, 35] m∕s, and the acceleration of
vehicles is limited to 𝒖 ∈ [(−7,−𝜋∕4), (3.3, 𝜋∕4)] m∕s2. The desired speed
𝑣 for the CAVs is considered as the traffic flow speed, which is set to
𝑑
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Fig. 7. Safety with time-driven and event-driven CBFs (left to right: time-driven approach with known HDV dynamics, time-driven approach with unknown HDV dynamics,
event-driven approach with unknown HDV dynamics). 𝑏𝑖,𝑗 (𝒙𝑖 ,𝒙𝑗 ) denotes the value of the CBF between vehicles 𝑖 and 𝑗, where (𝑖, 𝑗) ∈ {(𝐶,𝐻), (1, 𝐶), (1,𝐻), (𝐶,𝑈 )}. 𝑏𝑖,𝑗 (𝒙𝑖 ,𝒙𝑗 ) ≥ 0
denotes safety guarantees (Case 3, not Cases 1 and 2).
30 m∕s. To guarantee safety, in designing the size of the ellipse in (63)
as a safe region, we set the parameters 𝑎𝐶 = 𝑎1 = 0.6 as the reaction
time of CAVs, and 𝑏1 = 𝑏𝐶 = 0.1 to let the minor axis approximate the
lane width 𝑙 = 4𝑚. The maximum allowable maneuver time is set at
𝑇𝑓 = 15𝑠. The real HDV dynamics are unknown to the controller and
expressed as:
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⎢
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where 𝒖𝐻 is either a random policy or controlled by a human player.
𝜎1, 𝜎2 denote two random processes with uniform pdfs over the interval
[0.9, 1.1], and 𝜀1 ∈ [−0.7, 0.7], 𝜀2 ∈ [−0.5, 0.5], 𝜀3 ∈ [−0.5, 0.5], 𝜀4 ∈
[−0.7, 0.7] are disturbances. The initial states of vehicles at time 𝑡0 = 0
are given as 𝒙𝐶 (𝑡0) = [20 m, 0 m, 0 rad, 25 m∕s]𝑇 , 𝒙1(𝑡0)=[50 m, 4 m,
0 rad, 29 m∕s]𝑇 , 𝒙𝐻 (𝑡0) = [10 m, 4 m, 0 m, 28 m∕s]𝑇, 𝒙𝑈 (𝑡0) = [60 m, 0 m,
0 rad, 20 m∕s]𝑇 . The detailed setup using the event-triggered CBF-based
QPs is given in Li et al. (2023). The computation times for time-driven
and event-driven approaches are 1.5 ms and 24.0 ms, respectively.

6.2.1. Comparison between time and event-driven approach
We compare our event-triggered approach in solving CBF-based QPs

with unknown HDV dynamics to a time-driven approach. We set the
discretized time interval length to be 𝛥 = 0.05 s. Due to inter-sampling
effects on system performance when applying a time-driven approach,
we consider three cases to test the effectiveness of the event-driven
approach in implementing the lane-changing problem. The HDV policy
is set to be random, satisfying 𝑢𝐻 (𝑡𝑘) ∈ [−1.7, 1.7] m∕s2, 𝜙𝐻 (𝑡𝑘) ∈
[−0.2𝜋, 0.2𝜋] rad, 𝑘 = 0, 1, 2,….

Case 1: Time-driven approach with known HDV dynamics. In this case,
we assume the HDV dynamics (66) with disturbances are known to
CAVs when we apply a time-driven approach.

Case 2: Time-driven approach with unknown HDV dynamics. In this
case, the HDV dynamics are unknown to CAVs. Thus, HDV states have
to be estimated at each time step 𝑡𝑘 = 𝑡0 + 𝑘𝛥, 𝑘 = 0, 1, 2,….

Case 3: Event-driven approach with unknown HDV dynamics. Here, we
assume HDV dynamics are unknown to CAVs and HDV states have to
be estimated at each time step 𝑡𝑘, 𝑘 = 0, 1, 2,….

The simulation results are shown in Fig. 7, where the 𝑥-axis denotes
the simulation time and the 𝑦-axis denotes the value of safety constraint
𝑏𝑖,𝑗 in (63). 𝑏𝑖,𝑗 < 0 represents a violation of the safety constraint
between vehicles 𝑖 and 𝑗. In Fig. 7, the distances between vehicles 1
and 𝐶 (red curve), vehicles 1 and 𝐻 (yellow curve) keep increasing. The
two constraints about to be violated are 𝑏𝐶,𝑈 (purple curve) and 𝑏𝐶,𝐻
(blue curve). From Fig. 7(a), even if the HDV dynamics are assumed
to be known to CAV 𝐶, we still have 𝑏𝐶,𝐻 < 0 at some points, which
means the distance between vehicles 𝐶 and 𝐻 is less than the safe
distance. Similar results occur in Fig. 7(b), where 𝑏 (blue curve) is
12

𝐶,𝐻
Fig. 8. Snapshots of human study with an aggressive player using the proposed
framework (left to right: snapshots t = 0s, t = 1s, t = 3s, t = 5s). The red
HDV is controlled by an aggressive human player, the green vehicles are CAVs and
the cyan vehicle is a blocking vehicle. Blue ellipses denote safe regions. Safety is
guaranteed between the HDV and CAVs with human-in-the-loop. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

below 0 at some points, violating safety during the maneuver. Safety
is not guaranteed even with state synchronization under the time-
driven approach. In Fig. 7(c), all curves are above 0, implying safety
guarantees for all vehicles during the lane-changing maneuver.

6.2.2. Human driver case studies
The simulation results in Section 6.2.1 illustrate the effectiveness

of the event-driven approach to guarantee safety in lane-changing ma-
neuvers with random HDV policies. We now further introduce human
control in the framework, from which the human driver’s aggressive-
ness will affect CAV responses. We have drivers perform aggressive,
hesitant, and conservative driving behaviors to test the proposed ap-
proach through the merging point, safety satisfaction, maneuver time,
and energy consumption. The aggressive human driver exhibits acceler-
atory tendencies irrespective of surrounding vehicles, refusing to yield
the right-of-way. In contrast, the conservative human driver priori-
tizes safety contingencies above all else, readily yielding to proximate
vehicles. Finally, the hesitant driver is characterized by driving uncer-
tainty, responding to surrounding vehicles with sudden, inconsistent
accelerations and decelerations. Taking the aggressive performance as
an example, snapshots of how the maneuver evolves are shown in
Fig. 8. The simulation results for three types of driving players are
summarized in Table 1. Given the safety constraint that is about to be
violated is 𝑏𝐶,𝐻 between vehicles 𝐶 and 𝐻 (from the results in Fig. 7),
the column ‘‘Safety’’ in Table 1 is defined as the minimum value of
𝑏𝐶,𝐻 (𝑡𝑘), 𝑘 = 0, 1, 2,… during the entire maneuver.

Table 1 shows that if the human driver is aggressive, 𝐶 is always
conservative and chooses to merge behind the HDV. On the contrary,



Annual Reviews in Control 57 (2024) 100944W. Xiao et al.

A

A

A

A
B

B

K
K

L

L

M

N

O

P

R

S

S

T

T

T

T

T

Table 1
Performance of CAV 𝐶 under different human driver types. ‘‘A-HDV‘‘ and ‘‘B-HDV’’
represent merging ahead of HDV and behind HDV, respectively. ‘‘Safety’’ denotes the
minimum value of 𝑏𝐶,𝐻 during the entire maneuver in the repeated 10 times.

Human
driver type

Times Safety Terminal
time 𝑡𝑓 [s]

Energy

A-HDV B-HDV

Aggressive 0 10 627.7 3.4 ± 0.3 27.1 ± 25.9
Hesitant 5 5 521.2 8.8 ± 1.4 63.2 ± 46.2
Conservative 10 0 575.6 3.8 ± 0.7 18.8 ± 17.0

if the human driver is conservative, then it is safe for 𝐶 to behave
aggressively and merge ahead of the HDV. If the human driver is
hesitant, the merging point varies and depends on the real-time traffic
conditions. Note that all values in the Safety column are positive, which
indicates no safety constraint is ever violated under the proposed event-
driven approach. Moreover, considering the maneuver time 𝑡𝑓 in view
of energy consumption, we notice that when the driver’s intention is
explicit, i.e., the human driver is aggressive or conservative, 𝐶 can
respond and merge quickly by adapting to the HDV’s behavior: the
average maneuver time is 3.4𝑠 and 3.8𝑠, respectively, with correspond-
ing energy consumptions 27.1 and 18.8. However, if the human driver
performs hesitantly, the driver intention is not clear to CAV 𝐶, so
that it always travels in a conservative manner with a longer average
maneuver time of 8.8𝑠, and higher energy consumption of 63.2. This
motivates exploring an optimal way to evaluate human characteristics
in advance so that 𝐶 can make decisions earlier, hence improving its
performance.

7. Future research directions

We have presented an event-triggered framework for safety-critical
control of multi-agent systems with unknown dynamics, which enables
model-free safety-critical control. This framework is based on defining
adaptive affine dynamics to estimate the real system state, and an
event-triggering mechanism for solving the problem using a condition
we determine that guarantees safety between events. The proposed
model-free method sets the stage for promising future research along
this direction, including:

(1) New relative degree reduction techniques for CBFs to avoid the
need for real-time measurements of high order state derivatives.
We also need to address the conservativeness of the relative de-
gree reduction methods. We have demonstrated the effectiveness
of the proposed framework by applying it to two multi-agent
systems with humans in the loop.

(2) Feasibility guarantees for the proposed robust event-triggered
CBF method and, more broadly, the CBF method. This infeasi-
bility issue mainly results from the conflict between CBF/HOCBF
constraints and control bounds. Although there are preliminary
investigations regarding the feasibility of the CBF method (Bree-
den & Panagou, 2023; Xiao et al., 2022; Xu, Xiao, & Cassandras,
2022), these methods are mostly based on conservative ap-
proaches, and it is still challenging to find an effective solution
for general constrained optimal control problems.

(3) Safe human interactions. We may explicitly model the dynamics
of human controlled agents similar to those of the ego agent. As
a result, both the human control and the control of autonomous
agent show up in the CBF constraint. Under proper assump-
tions, it is possible to infer the human control policy using the
proposed framework, e.g., in a game-theoretic manner.
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