This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

Optimal On-the-fly Route Planning with Rich
Transportation Requests

Cristian-Ioan Vasile*, Member, IEEE, Jana Tumova®*, Member, IEEE, Sertac Karaman, Member, IEEE,
Calin Belta, Fellow, IEEE, and Daniela Rus, Fellow, IEEE

Abstract—The paper considers the route planning problem for
a vehicle with limited capacity operating in a road network.
The vehicle is assigned a set of transportation requests that are
more complex than traveling between two locations, may involve
dependencies between their sub-tasks, and include deadlines and
priorities. The requests arrive gradually over the deployment
time-horizon, and thus replanning is needed for new requests.
We address cases when not all requests can be serviced by
their deadlines despite car sharing. We introduce multiple quality
measures for plans that account for requests’ delays with respect
to deadlines and priorities. We formalize the problem as planning
in a weighted transition system under syntactically co-safe LTL
formulas. We develop an online planning and replanning algo-
rithm based on the automata-based approach to least-violating
plan synthesis and on translation to a Mixed Integer Linear
Program (MILP). Furthermore, we show that the MILP reduces
to graph search for a subclass of quality measures that satisfy
a monotonicity property. We show the approach in simulations,
including a case study on the mid-Manhattan road network over
the span of 24 hours.

Index Terms—Route Planning, Mobility on Demand, Au-
tonomous Agents, Temporal Logic, MILP

I. INTRODUCTION

HIS work is motivated by mobility-on-demand scenarios,

where a single vehicle receives transportation requests
from multiple customers over time and must service all of
them. For example, a customer in a Manhattan road network
illustrated in Fig. 1 would like to be picked up at the inter-
section of 7th Ave and 43rd St and brought to the intersection
of Park Ave and 53rd St. Another customer is interested
in being picked up at the Madame Tussauds, taken to the
Rockefeller Center, while passing by a flower shop, where
they can pick up flowers. A third customer would like to visit
any shopping center within Midtown. Customers’ requests
need to be completed by their deadlines and according to
associated priorities (e.g., membership level of customers in
the mobility-on-demand system). Customers may share the
vehicle, but never exceed its capacity. The planning goal is
to compute a trip for the vehicle that services all requests
before their given deadlines. Similar planning goals occur in
package and service delivery using ground vehicles [1], aerial

Cristian-Ioan Vasile is with Lehigh University, Bethlehem, PA, USA,
email: cvasile@lehigh.edu. J. Tumova is with KTH Royal Institute of
Technology, Stockholm, Sweden, e-mail: tumova@kth.se. Sertac Karaman is
with Massachusetts Institute of Technology, Cambridge, MA, USA, email:
sertac@mit.edu. Calin Belta is with the University of Maryland, College Park,
MD, USA, email: calin@umd.edu. Daniela Rus is with Massachusetts Institute
of Technology, Cambridge, MA 02139, USA, email: rus@csail.mit.edu.

* Authors contributed equally.

Manuscript received Month Day, Year; revised Month Day, Year.

Fig. 1: The road network corresponding to part of mid-
Manhattan is shown. Travel duration estimates are inferred
from real taxi travel data in hourly increments.

drones [2], or mixed fleets [3], [4] that may be required to
satisfy complex transportation demands, too. For example,
during the covid-19 pandemic, taxi drivers from Stockholm,
Sweden were delivering home tests to people, who ordered
them, and picking them up approximately 15 minutes later,
which made their task more involved than the standard pick-
up and drop-off. They had to decide how to route optimally
in the road network to satisfy all demands. However, in
many cases the problem does not have a solution that meets
all the deadlines. What should the vehicle do then? Which
transportation requests should be delayed and how much?
What is the optimal route of the vehicle in the road network?

In this work, we aim to design a route planning approach
that can (i) accommodate rich transportation demands arriving
sequentially in time and involving temporal or conditional
dependencies, deadlines, priorities, and constraints on capacity
of the vehicle, and (ii) resolve situations, when all demands
cannot be met by the desired deadlines.

A. Related Work

We discuss the related work from two perspectives: First,
we position the problem that we tackle in the context of route
planning in road networks. Second, we position the proposed
temporal logic-based solution in the context of literature that
focuses on solving similar temporal logic planning problems
in general terms, or for various autonomous planning applica-
tions.

1) Route planning: Route planning, and re-planning in
the context of a autonomous mobility-on-demand system was
recently considered in a number of related works. Real-time
rebalancing policy for a shared fleet of autonomous vehicles

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

was developed [5], [6] and the effects of the rebalancing
on congestion was studied [7], [8]. Different route planning
algorithms were proposed to improve the performance of the
traffic network taking the mesoscopic perspective and using
dynamic estimations of congestion or transportation demands
[9], [10]. From a microscopic perspective, task assignment and
(predictive) route planning for individual vehicles, or different
variants of dial-a-ride problem with cost optimization were
addressed by e.g., [11] or [12].

Related work also includes various versions of the vehicle
routing problem in general [13], and especially dynamic
vehicle routing with time-dependent travel times, typically
captured through a stochastic model. Here, the goal becomes
to find a path with the least expected travel time. For in-
stance, [14] proposed to find a set of non-dominated shortest
paths in a stochastic road network. The closest route planning
literature to our work focuses on handling dynamically chang-
ing demands. For example, [15] tackled real-time demands and
sought optimal departure times using Mixed Integer Linear
Programming (MILP). [16] handled disruptions occurring dur-
ing the execution of a vehicle route. Recently, [17] considers
the dynamic vehicle routing problem with stochastic requests
and proposes an approximate solution with knapsack-based
linear models to scale to larger instances. This paper also
includes a comprehensive literature review on the topic.

This paper differs from the state-of-the-art literature in its
focus on handling a richer class of transportation planning
problems than simple A-to-B travels, coverage, or multi-depot
vehicle routing. To that end, we propose to use temporal
logic formulas as a request specification. Temporal logics
are expressive enough to capture all three above mentioned
transportation request types, and much more than them. It
should be noted that temporal logic formulas cannot be
generally decomposed into a conjunction of simple tasks due
to interdependencies introduced by nesting temporal opera-
tors [18]. In recent years, temporal logics have been widely
adopted in robotics to specify robotic tasks due to their
richness, rigorousness, resemblance to natural language, and
the existence of algorithmic solutions to synthesize plans that
provably satisfy a given temporal logic task [18]. Related work
has focused on a variety of challenges, including consideration
of system dynamics [19], [20].

2) Planning with temporal logic specifications: Since we
aim to specifically focus on situations, when all demands
expressed in temporal logic cannot be met simultaneously,
the closest related work within temporal logic-based planning
literature is the work handling unsatisfiable specifications
that includes, e.g., finite least-violating planning [21], [22],
[23]. The authors focus on finding the maximal part of the
specification that can be satisfied by the system model and
computing the corresponding plan for this part of specification
only. In [24] and [25], a given temporal logic formula is
systematically revised such that system satisfies it, and the
modified formula is close to the original one. In contrast to our
work, none of these consider deadlines or explicit time bounds
associated with the temporal operators in the specification and
hence neither their impact on solution quality and computation.

Quantitative models and specifications have been proposed

in temporal logic-based planning, where minimization of the
durations between revisits of specified locations is required in
addition to satisfaction of temporal logic missions [26], [27].
Timed temporal logics have been chosen as a task and motion
specification language for autonomous robots in several stud-
ies, tackling the problem for instance via automata-based for-
mal synthesis in coupling with system abstractions [28], [29]
or sampling-based planning [30], via reduction to MILP [31],
[32], [33], or via timed Petri nets [34]. However, the problem
these work focus on correct-by-design synthesis and not on
least-violating planning with respect to a set of specifications.
Related work also includes work on periodic replanning under
knowledge updates [35], [36], [23]. The updates originate
due to changes in the model, and not due to changes in the
specifications, which we focus on in this paper.

Vasile et al. proposed a timed logic called Time Win-
dow Temporal Logic (TWTL), and the temporal relaxation
of deadlines is considered under a measure resembling the
bottleneck delay cost [37]. This logic was used to specify
a surveillance task that needs to be satisfied infinitely many
times in sequence by a multi-robot system [38]. However, that
work does not consider task priorities, replanning based on
task arrival, and multiple measures of violation. The authors
considered only cumulative delay and bottleneck delay without
priorities. While TWTL may be used to specify tasks with
more complex timing constraints, such as tasks with time
constrained subtasks and Boolean compositions of time con-
strained tasks aside from conjunction, the demands considered
in this paper are more general.

B. Contribution

The contributions of this work are four-fold.

1) We formalize the problem of route planning under com-
plex, gradually arriving, prioritized, and possibly mu-
tually unsatisfiable transportation requests via temporal
logic-based planning framework and propose three differ-
ent cost functions to determine the quality of a routing
plan based on delays in servicing the requests.

2) We design a general MILP-based solution to compute
the optimal path with respect to a selected cost function
and we instantiate the MILP formulation for the three
different cost functions we have proposed.

3) We design a more efficient, linear-time graph search-
based solution for a particular subclass of cost functions.

4) We evaluate the proposed formulation and solution, and
compare the performance of the three proposed cost
functions on several case studies, including a case study
on the mid-Manhattan road network.

This paper builds on its preliminary conference version [39],
but adds two new technical aspects, that make the problem
more realistic and yield changes to the problem formalization
and solution. First, we introduce the feature of car sharing
with a vehicle capacity. Second, the transportation request is
required to hold from the time of customer pick-up, not from
the time of its arrival. Furthermore, we provide more elaborate
experimental evaluation by adding a realistic case study of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

route planning in the mid-Manhattan road network. To im-
prove runtime performance, we have employed an abstraction
method for the road network based on minimal paths between
locations. We have added theoretical complexity and empirical
scalability analysis. Lastly, we extended the description of the
solution approach and made the mathematical programming
encodings explicit.

To our best knowledge, this work is the first one that
systematically integrates planning for an infinite sequence of
gradually arriving demands in the form of temporal logic
specifications with planning under infeasible deadlines. The
route planning algorithms presented in this paper were used
by [40] for combined motion and route planning for a vehicle
tasked with servicing a stream of demands similar to the setup
in this paper. The authors used the present work as a black
box to ensure long-term satisfaction of transportation requests
while ensuring minimum violation of rules of the road induces
by local short-horizon motion plans.

II. PRELIMINARIES

We denote the positive and nonnegative real numbers by
R, and Ry. The power set and cardinality of a set S are
25 and |S|. Given an infinite sequence w = wiws..., we
use w; and Wy, to denote the j — th element, and the
segment w,, ...w,,. Specifically, w;.,, is the prefix ending
at the m-th position of w and w,.» is the suffix starting
at the n-th position. If n > m then w,.,, is empty. The
concatenation of a finite sequence w and a finite or an
infinite sequence w’ is denoted by w - w’. For simplicity,
we use s € wjwews... to denote the membership of the
element s in the set {wy,wsq,ws,...}. The i-th projection
proj; of a tuple (s1,...,8y) is proj,(si,...,Sn) = ;. We
will use proj, to denote also the i-th projection proj, of a
sequence of tuples (s1,1,..-,5n,1)--(S1,m,- - Sn,m)> Which
is proj;(si1,---y8n,1) - (S1,ms - -
The canonical basis of R™ is denoted by {(i,...
positive integer m, we denote (m) = {1,...,m}.

~73n,m) = Si1---Si,m-
»Cm). For

Definition 1 (WTS). A weighted deterministic transition sys-
tem (WTS) is a tuple T = (S, Sinit, R, W,I1, L), where S is a
finite set of states; Syt € S is the initial state; R C S x S
is a transition relation; W : R — R is a weight function; 11
is a set of atomic propositions; and L : S — 2 is a labeling
function.

Even though the WTS defined above does not have inputs,
we call it deterministic to emphasize that transitions can be
chosen deterministically. Given that the current state of the
system is s € S at time ¢, by taking a transition (s,s’) € R,
the system reaches the state s’ at time ¢’ = ¢+ W ((s,s")). A
trace T = $18983 - . . is an infinite sequence of states of 7, such
that s1 = Sini, and (sj,sj41) € R, for all j > 1. Each trace
T = $18283 ... is associated with the time sequence T(7) =
titats ..., where t; = 0, and tj = tj,1 + W((ijl, Sj)), for
all j > 2. The time ¢; denotes the time elapsed till reaching
the j-th state s; on the trace 7. The word produced by 7 is
the sequence w(7) = L(s1)L(s2)L(s3)

Definition 2 (scLTL). A syntactically co-safe Linear Temporal
Logic (scLTL) formula over a set of atomic propositions 11 is
defined recursively as follows

o m and —7 are scLTL formulas
o if w1 and o are scLTL formulas, then also p1 N o,
©1 Vo, N1, For, and p1U o are scLTL formulas,

where ™ € Il is an atomic proposition, — (negation), N
(conjunction), and V (disjunction) are Boolean operators, and
U (until), N (next), and F (eventually) are temporal operators.

An scLTL formula is interpreted over infinite sequences
over 25, such as the words produced by a WTS. Intuitively,
7 is satisfied by a word w if it holds true in its first position
wy and —7 is satisfied if 7 is not true in wy. N is satisfied
if ¢ holds true in the next position, we, F¢ if ¢ holds true
eventually, in some w;, ¢ > 1, and @1 U @2 holds true if ¢,
holds true until a position where @5 holds true.

A good prefix w.r.t. scLTL formula ¢ is defined as a finite
prefix wi.,,, with the property that wy.,, - w’ satisfies ¢, for all
w’ over 2.

Definition 3 (Minimal good prefix). Given a word w over 2!
and ¢ over 11, a good prefix wy., of w is minimal, if w1.,,_1
is not a good prefix.

A trace 7 of WTS satisfies if and only if it produces a
word w(7) that satisfies ¢. A (minimal) good trace prefix is
the one that produces a (minimal) good prefix.

Definition 4 (Finite automaton). A deterministic finite automa-
ton is a tuple A = (Q, Qinit, 5,0, F), where Q is a set of
states; Qinit € @ is the initial state; 3 is a finite alphabet;
0 C Q x X — Q is a transition function; F' C Q is a set of
finite states.

A run of a finite automaton A over a finite word w = o71.y,
is a sequence of states p = @1.,+1, such that g1 = g;n;: and
(¢iy0i,¢i+1) € 0, for all 1 < i < n and it is accepting if
dn+1 € F'. In a nonblocking automaton, (g, o) is defined for
all g€ @ and 0 € X.

For any scLTL formula ¢ over II there exists a nonblocking
deterministic finite automaton A = (Q, ¢init, 2, J, F'), such
that ¥ = 21, and the sets of all words accepted by A and all
good prefixes of all words that satisfy ¢ coincide [41].

III. PROBLEM FORMULATION
A. Model

We consider a vehicle in a road network that is modeled as a
WTS T = (S, sinit, R, W, 11, L) with the following properties.
The set of states S represents locations of interest of the road
network, i.e. intersections, pick-up and drop-off points, etc.
The vehicle’s initial location is the initial state state s;,;;. We
capture the motion of the vehicle in the road network with the
transition relation R. The vehicle can move between locations
s and s if (s,s') € R. The time duration of a transition is
given by the weight function W. The vehicle can be stationary
at any location which we model using self-transitions, i.e.,
(s,s) € R and W(s,s) = ¢, for all s € S and some small
duration € > 0. We capture properties of interest such as

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

“Main road and l1st street intersection” or “a shopping mall”
via the set of atomic propositions II. All states are labeled
via the labeling function L : S — 2! that defines what atomic
propositions are true at each location. Furthermore, the vehicle
is associated with a capacity ¢ € N, and it can be shared among
customers (demands) as long as the capacity is not exceeded.

Example 1. We consider a small road network modeled as
a WTS shown in Fig. 2. Its states are labeled with atomic
propositions from the set I1 = {A, ... H, shopping mall}. The
capacity of the vehicle is ¢ = 4.

C 1 F 4 H shopping
mall
2 2 2
1 |E 4 shopping
B
G mall
2|2 2 Locations of the road network
° . . o
1 . labeled with atomic propositions
p ShOPPINE (et Tocation of the vehicl
Al D mall m Current location of the vehicle

labeled with A

Fig. 2: The figure shows an example of a WTS. The black
nodes represent location of interest, i.e., the state of the WTS,
and are labeled with atomic propositions. For example, the
propositions {H, shopping mall} hold at the upper right node.
The motion of the vehicle is captured by the edges (the
transitions of the WTS) with weights denoting travel times. In
this example, all roads are bi-directional with the same weight,
ie., (s,8) € R= (¢',s) € R and W(s,s") = W(s,s). For
simplicity, we do not show edges’ orientations, and self-loop
transitions (s, s) € R.

B. Specification

The rich transportation requests are given as a (possibly
infinite) set of demands Demands = {Di,Ds,...} that
appear gradually, at times tp, <tp, < ..., where tp, € Ry,
for all + > 1 . Each demand has five components: a pick-
up location, a task, a deadline, a capacity needed, and a
priority. All tasks define finite time behaviours. Thus, they
can be expressed using syntactically co-safe LTL (scLTL), a
fragment of LTL. Since each task specifies desired behavior
only within a finite time window, the syntactically co-safe
fragment of LTL is expressive enough, yet easier to handle in
comparison to full LTL. Formally, for all ¢+ > 1, the demand
D; = (Spick,i> ¥i> Ti, ¢i, Di), Where

e Spick,i €S is the pick-up location

o p; is an scLTL formula specifying the task translated into

a finite deterministic nonblocking automaton A4;;

o T; € Ry is the deadline;

e ¢; € N is the needed capacity and

e p; € N is the priority

Without loss of generality, we assume that the demands are
not satisfied trivially, and are not satisfied by only visiting the
pick-up location. The higher the p; is, the more important the
Di is.

C. Problem statement

Our goal is to find a plan for the vehicle that consists of the
vehicle’s route in the road network and a schedule of pick-
ups and drop-offs. The capacity of the vehicle should never
be exceeded, all tasks should be satisfied, and even though
it might not be possible to satisfy all of them within the
desired deadlines, the delays in servicing the tasks should be
minimized while taking into account the demand priorities.
In this section, we formalize this goal after introducing some
necessary definitions.

Consider a WTS 7T, a trace 7 = $1.oo of 7 with a time
sequence T(7) = t1.00, an infinite set of demands Demands,
and a pick-up decision function Pick : Demands — NU{oo},
where Pick(D;) indicates that demand D; is picked up at
time tpicp(p,), and satisfies spjcr(p,) = Spick,i (the demand
is picked up at the right location) and tp;cr(p,) > tp, (the
demand is picked up after it arrived). Pick(D;) = oo indicates
that the demand D; is never picked up.

Definition 5 (Active demand and demand in progress). A
demand is active if it has arrived, but the desired task has
not been achieved, yet. Formally, demand D; is active on the
trace T at time t € R if and only if tp, <t and for all t;, <t
it holds that Tpjcy(p,):x is not a good prefix w.r.t. @; according
to Def. 3.

An active demand may or may have not been picked up. If it
has been picked up, i.e. if t picy(p;) <1, we call it in progress.

On the other hand, the demand is completed if tp, <
tpick(p;) < t and there exists t, < t such that Tpicr(p,):k
is a good prefix w.rt. ;.

Definition 5 implies that we evaluate the satisfaction of ¢;
by the trace of the vehicle only from the moment that D; is
picked up. Let Dactiv, pick(t) and Dinprog,. p;.(t) denote
the set of all demands that are active and in progress at time
t, respectively. For simplicity, we use Dactiv(t) (Dinprog(t))
to denote Dactiv,, pick(t) (Dinprog, p;.(t)) whenever 7 and
Pick are clear from the context.

Definition 6 (Plan). A plan is a tuple (1, Pick) given by a
trace T of T and pick-up decision function Pick that satisfy
the following properties:
e Each demand eventually becomes completed. Formally,
for all i € N, TPick(D;):c0 ': ©i.
e The capacity of the vehicle is never exceeded. Formally,
for all j € N, it holds that EDiGDinprog(tj) c; <ec

Remark 1. It might seem that a plan should include also a
drop-off decision. However, since we assume that the drop-off
happens when the demand gets completed, the drop-offs can
be fully reconstructed from a trace and a pick-up function.

We have now formalized the notion of a plan that yields
completion of all demands while never exceeding the vehicle’s
capacity. Our goal is, however, to find an optimal plan in
situations where all tasks cannot be serviced within their
respective deadlines and a decision has to be made on which

I tpick(D;) > tks then Tpicr(p,):x is empty and cannot be a good prefix
of demand ;.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

demands will be delayed and how much. We define the degree
to which a plan meets a given set of demands based on
the demand priorities and the delays in servicing the tasks.
The degree’s value is time-varying, because demands arrive
sequentially over time are unknown prior to deployment. At
time ¢, it depends only on the task execution durations, dead-
lines and priorities of the active demands, i.e., the demands
that have arrived, but have not been completed, yet. Our
aim is then to find a plan that maximizes this degree of
satisfaction at all times. To summarize, let us assume that
we have an appropriately defined cost function J(t, Pick,j),
which expresses whether, and when the demands are met. We
will show several examples of such cost function below. The
problem we tackle has a receding horizon nature and can be
summarized as:

Problem 1 (Optimal continuation planning problem). Given a
road network modeled as a WTS T and an infinite set of gradu-
ally arriving demands, repeatedly find an optimal continuation
of the already executed plan. Formally, given a trace prefix
T1:j = T1:(j—1)"Sj, @ pick-up decision function Pick, and a set
of active demands Dactiv(t;) at time t; € Ry, find an optimal
continuation, i.e. a trace suffix 7}, = Sj - T1 1.o, and a con-
sistent pick-up decision function Pick™ : Dactiv(t;) — N with
the property Pick*(D;) < j = Pick*(D;) = Pick(D;)
that minimize the cost J(T1.(j—1) * T}io0s Pick™, 7).

To complete the problem formulation, let us define the task
delay and three different instances of cost function J.

Definition 7 (Task delay). The time of service of task p; is
ly, = tk, such that Tpicy(p,).x is the minimal good prefix of
TPick(D;):00 W-EL @ according to Def. 3. The task execution
duration is d; = (t,, —tp,); and the task delay is then A; =
di —T; = (t,, —tp,) — T;.

A negative task delay indicates that ¢; has been serviced
within the deadline T after its arrival. In contrast, a positive
task delay indicates that ¢; was serviced, but delayed by A,.

1) Highest-priority-first cost function: An optimal plan
must service the largest subset Dy,ax C Dactiv(t;) of active
demands with highest priority by their deadlines at each time
t; € T(r). The highest-priority-first cost function Jj, is:

D

D;eDactiv(t;)

Jn(T, Pick,j) = (A; + M|Dactiv(t;)|P" - 1(i)),

(D

0 ifA; <0

where M > maxp, epactiv(t;) Ai and I (i) =) %f A ; 0
1 A;

This way, for each demand D; € Dactiv(t;) it holds that

>

D; eDactiv(t;)
s.t. p;r <pi

|Dactiv(t;) pi,

Pit < |Dactiv(t;)

since there are at most |Dactiv(t;)| — 1 active demands D,
with priorities p;; < p; — 1. Hence, the high-priority demands
are strictly prioritized. Among two traces and pick-up decision
functions, the one that services the highest-priority demand
yields lower cost. In other words V(7y, Picky), (T2, Picks) €
{(T, PZC]{?) | Ty = Tl*:j,P’l.C]C*(Di) < 7 -

Pick(D;) = Pick*(D;)} it holds that Jp (71, Picky,j) <
Jn(12, Picks,j) <= 3D; € Dactiv, (t;) sit. A; <
0 A 3Dy € Dactiv,,(tj) s.t. AL, <OApP > p.

2) Bottleneck-delay cost function: The optimal plan must
“fairly” service the active demands. For all times t; € T(r),
we want to minimize the largest task delay weighted by its
priority. The bottleneck-delay cost function J, is:

Jb(T7 PZCk7j) = Ai *Di (2)

max
D;eDactiv(t;)
3) Cumulative-delay cost function: The optimal plan must
minimize the weighted sum of delays for all of active demands
with their priorities as weights. The cumulative-delay cost
function J, is
>

Jeo(1, Pick,j) = A pi 3)
D;eDactiv(t;)

Planning is non-preemptive using the highest-priority-first
cost function. Demand with high priorities will be preferred
and not interrupted irrespective of the delays incurred by lower
priority requests. Bottleneck- and cumulative-delay cost func-
tions enable a compromise. No demand is delayed indefinitely
using the bottleneck-delay cost while cumulative delay aims

to optimize overall service efficiency over all demands.

Example 2. We revisit Example 1 and consider a simple
scenario with two demands from Table I, and a vehicle with
capacity ¢ = 4 deployed in the road network shown in Fig. 2.
Both demands arrive at the same time t; = tp, = tp, = 0,
and at the same pick-up location A. Thus, demands D,
and D5 are active at time t1. The first demand @1 requires
visiting locations E, B, and H in order (possibly concurrently)
within the deadline Ty = 10. It’s priority is p1 = 7, and
requires ¢y = 1 capacity. The second demand ps requires
visiting a shopping mall, i.e., one of D,G,H. It’s priority is
p2 = 1, and requires co = 2 capacity. Two solutions paths,
good trace prefixes, are shown in Fig. 3. Both demands are
picked up immediately, Pick(D,) = Pick(D3) = 1, since
c1 +c = 3 < ¢ = 4. The solution in Fig. 3.(A) visits
E, B, H in order and services both demands by tg = 10. On the
other hand, the solution in Fig. 3.(B) visits D, E, B, H in order.
At time to = 1, demand Do is done and becomes inactive.
Demand D is completed by t; = 11. We summarize the
durations, delays, and cost functions for the two cases (A)
and (B) in Table I1. For the highest-priority-first cost function
Jn in (1), solution in (A) is optimal as long as M is chosen
to be larger than the longest delay, i.e. 7, which is expected
because the priority p1 of Dy is higher than priority py of
Dy. For the cumulative-delay cost function J. in (3), solution
in (B) is optimal. The cost strikes a balance between short
delays for higher-priority demands and avoiding the excessive
delays of lower-priority ones. Both solutions are optimal under
the bottleneck-delay cost Jy in (2). Increasing the priority of
demand D to p1 = 10 would shift the optimal solution to (A)
for all three cost functions. A lower priority of p1 < 7 would
make (B) optimal for the bottleneck-delay cost as well, but not
highest-priority-first.

The notation used throughout this paper is summarized in
Table III.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

Pick-up scLTL formula Arrival Deadline Priority Capacity

D, Spick,1 = A p1 :}-(E/\J:(B/\]:H)) tDl =0Ty =10p1 =7 c1 =1
D2 spick,2 = A @2 = Fshopping mall tp, =0 T2 =3 p2 =1 c2 =2

TABLE I: Example from Fig. 2 with two demands.

C 1 F 4 H cC 1 F 4 H
shopping shopping
mall mall
2 2 2 2 2 2
B 1 |E 4 B 1 |E 4
shopping shopping
mall mall
212 2 212 2
1| shopping 1 S shopping
A D mall (A) A D mall (B)

@ Locations of the road network labeled with atomic propositions
~n~ Trace prefix from A to H

Fig. 3: The figure shows two example solution paths (good
trace prefixes) for the WTS in Fig. 2 and demands in Table I.
Both start at the current location A and end at location H.

(A) B)
tpy = di 10 11
tp, = do 10 1
Aq 0 1
Ay 7 2
Ju(r,1,1) (04+0)+ (7T+2'M) (1+2"M)+(-2+0)
=2M +7 =128M — 2
Jp(7,1,1) max(0-7,7-1)=7 max(1-7,(-2)-1)=7
Je(r,1,1) 0-7T+7-1=7 1-7-2-1=5

TABLE II: Duration, delay and cost values for the solution
paths (good trace prefixes) in Fig. 3.(A) and 3.(B).

TABLE III: Symbols table.

T transition system representing road network

II set of atomic propositions and associated labeling map
L labeling map

Demands set of all demands

D; i—th demand

Dactiv(t),

Dinprog(t) |sets of active and in-progress demands at time ¢
Spick,i pick-up location of demand D;

©i sc-LTL task specification of demand D;
Ti,CiyDi deadline, capacity, and priority of demand D;
tp;; tpick(p,) [time of arrival and pickup of demand D;

tp; dis A time of completion, task execution duration, and delay of D;
T, trace in T

Pick Pick(D;) indicates D; is picked up at time ¢ pjcr(D,)

5, q current state in 7 and A

IV. MILP-BASED SOLUTION
A. Approach overview
To solve Problem 1, we initialize j := 1, 77,5 = Sini,
Pick(D;) = oo for all D; € Demands, and t; := 0 and we
iteratively
(i) find a solution (7%, Pick™) to Problem 1;

jioo?
(ii) perform the pick-up Pick*fl(j) if any, and execute the
first transition (s;,s;41) of 77, and;
(iii) repeat the procedure starting with step (i) with new trace
prefix 71.; := T1.; - Sj+1, updated Pick := Pick*, time
tj:=1t; + W(s;,s;+1) and index j := j + 1.

With j — oo, we obtain that (7.5, Pick) are the solution
to Problem 1.

Remark 2. In our framework, re-computation can take place
only at states. In other words, transitions once started cannot
be preempted, and future plans can be modified only after they
are completed.

B. Product automaton

We propose an automata- and optimization-based solution
to Problem 1. At time ¢; when a new demand arrives or one is
completed, we construct a finite weighted product automaton
P(4). The product model combines the motion model of the
vehicle WTS T with the finite state automata obtained from
all currently active demands Dactiv(t;). The initial state of
the product captures the current location of the vehicle in
the road network, and the progress towards satisfaction of the
active demands. The weights of P(j) are computed based on
durations (weights) of 7 and the priorities of active demands
Dactiv(t;). Thus, we translate the problem of finding an
optimal path for the vehicle (trace of 7") with respect to cost J
into the problem of finding an optimal run in P(j). The general
idea of handling infeasibility via weighed product construction
has been introduced earlier, e.g., in [22]. The key elements of
our approach are the definition of states, design of the weight
function and evaluation of the initial state that enables us to
do so.

Consider a WTS 7T, its trace prefix 71.; executed up to time
t;, a pick-up decision function Pick, a set of active demands
Dactiv(t;) = {Di,,...,D;,, } # 0, and a cost function
J. Note that given Pick, we know the demands in progress
Dinprog(ty) for all 1 < k < j. Let us use Dactive(ty) = 0
to denote that before the start of the vehicles run in the road
network, there are no active demands.

We translate each formula ¢; of demand D; € D(t;)
into a nonblocking deterministic finite automaton 4; =
(Qi, Qinit i, 21, 6;, F;). Since ¢; is an scLTL formula, we
assume that accepting states are terminal, i.e., d;(q,0) € F;
for all ¢ € F; and o € 2"

Let 5; denote the current state of 7 at time ¢, i.e. the last
state of 71.; = Ty.(j—1) - §; and let g;; denote the current
state of the automaton A; at t;, for all D; € D(t;). Note
that at time t; = t; = 0, 51 = $;,;s. However, g;1 can be
either ¢, if demand D; € D(¢1) is not picked up at ¢y, or
8i(Qinit.i, L(s1)) if it is. Similarly, the set of possible current
states for a demand D, € Dactive(t;) \ Dinprog(t;—1) is

{qmit,iv 0i(Qinit i L(ﬁj))}
{Qim’t,i}

Note that for all D; € Dactive(t;) N Dinprog(t;—1), the
current state is ¢, ; = 0;(q; j—1, L(s;)).

if 5j = Spick,i

Q= @)

otherwise.

Definition 8 (Weighted product automaton at t;). The
weighted product automaton P(j) =T @ Ai, ® ... Q@ A;,, = at
time t; is a tuple (Qp, Qinit,p, 6P, Fp, Einit,p, Wp), where
L4 QP : {(37Q17~-~»Qmj»D) S S X (;n:Jl i() X
{QDactw(tj) | ZieD ¢ < C},’

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

L Qinit,P = {<5j7 qi1,j7 ey qimj NE (DQCtiv(tj) N
Dinprog(tj_1)) U Dpicked) }, where
Dpicked C {D; € Dactiv(t;) | $; = Spicki N @i € Fi},
and

0 (Ginit,i, L(s5))
0i(qi,5-1, L(s;))

Qinit,i

if D; € Dpicked
if D; € D(tj) N Dinprog(tj_1)
otherwise;

Qij =

e dp C Qp X Qp is a transition relation;

((SaQ17--~,Qmj7D)v(5laq/17~"aQLnjalD/)) Eop if

o (s,8') € R;

o (¢:,L(s"),q}) € 6;,¥D; e DND" or q; = ¢,

o D'=(D\ Ddropped) U Dpicked, where
Ddropped {D; € Dactiv(t,) | ¢ € F},
Dpicked C {D € Dactiv(t;) | 8" = Spick,i N ¢ &
F;}; and

© EDieD’ ¢ <c

o F'P = {(SaQila"'aQimjv(b) | qi S FL,VZ S
{it, o im,
o Eipitp = (Vl,...,ij), where V{ € {1,...,mj},

vp=1t;—1 D, is the evaluation associated with the initial
state; and
« Wp:dp — Rg” is the weight function, where
WP((SaQD"'>qm_7'aD)7(Slain",q;nj’,D/)) -
(U1, Vm,), such that Y € (m;),
W(s,s') ifa, € F,
V; =
0 otherwise.

The product P(j) is a finite state automaton, whose states
are augmented with information about picked-up demands,
evaluation of the initial state based on changes in the set of
active demands, and transition weights that capture delays in
completion of demands. We omit the alphabet of P(j) since
it bears no significance.

A finite run of P(j) is a sequence p = v;v;41 ... Vy, Where
Vi <k<n,ve=(5q1k--sqm;k Pr)s Vj € Qinit,p, and
Vj < k < n it holds that (vg,vg41) € 0p. It is accepting
if v, € Fp. Note that in the accepting states, the set of
demands in progress Dj is empty. From the construction
of P(j), it follows that p projects onto a trace fragment
proj;(p) = Tjm = §jSjt1...5, of T and a finite run
fragment proj,,1(p) = 0ipjin = Ui ig.j+1- - Gig.n of Aif,
for all £ € (my). If p is accepting then 7y.(;_1) - Tjun is
a good trace prefix with respect to ;, i.e. each g;, ,, is an
accepting state of A;, for all D;, € Dactiv(t;). Vice versa,
for each good trace prefix 71., of 7 that produces a word
accepted by A; via an accepting run p; for each demand
D; € Dactiv(t;), there exists a finite accepting run of P
that projects onto a suffix 7;., of 1., that starts in s(¢;) and
onto a suffix g; ., of each p; that starts in q; ; and ends in
an accepting state. The construction of the product automaton
also implies the following: assuming that demand D; is in
progress, a conflicting demand will not be picked up unless
D, is completed.

Remark 3. Similar to [27] or [42], we construct P such that
all its states are reachable from the initial one, which reduces

the memory footprint considerably. Furthermore, before con-
structing ‘P, we reduce the transition system T by algorithmi-
cally removing states that are not significant with respect to
the satisfaction of the active demands analogously to [43]. For
instance, consider scLTL formulas ¢1 = F(E AN F(B A FH))
and po = Fshopping mall. Clearly, the satisfaction and
violation of the formulas is not influenced by a visit to any state
of T that is not labeled with E, B, and H, and shopping mall,
respectively. We can thus replace these states in T with
transitions representing the minimum duration paths between
states that contribute to the satisfaction of active demands.

C. General MILP formulation

The three cost functions J defined in Sec. III-C are par-
ticular choices of goals for optimal planning. In this section,
we propose a general solution to Problem 1 that can handle
a large class of cost functions J(7, Pick,j) that depend on
(a) the execution durations d(¢;) = (di;,...,d;,,). (b) the
deadlines T(t;) = (T},,...,T;,), and (c) the priorities

tm

p(t;) = (pirs---,Pi,,) of the active demands Dactiv(t;) at
time ¢;:

J(7, Pick,j) : Ry x Ry x N™ — R,

J (1, Pick, j) = [(d({;), T(t;), p(t;)) , (5)
where m; = |Dactiv(t;)|.

Assumption 1. We assume that the cost function is the max-
imum of linear functions in the delays and delay violations.
Formally, we assume

J(d,T,p) = max {CA(T,p,O)A+C7(T,p.OI}, (6)

where A=d-T, I=1a50 Ca : Ry” x N™ x (m;) —
Ry, and Cp : Ry¥ x N™i x (m;) — Ry are the stacked
delay vector, the delay violation indicator vector, and the delay
and indicator gain functions, respectively.

Each of the three cost functions listed above — the highest-
priority-first, the bottleneck-delay, and the cumulative delay
one, satisfies Assumption 1, which is derived as follows:

1) Highest-priority-first cost function: Let Ca(T,p,¢) = 1
and C;(T,p,?) = MZ@/e(mj) [Dactiv(t;) [P (e for all £ €
(m;). Then we have

f((l7 T, p) = Imax 1TA + M Z "Dactiy()|p£1 I

fetm;) ve(my)
= max Ay + M|Dactiv(t;)|Pe I(¢
B 3 (e b et
Z A+ M Z |Dactiv(t;) [P I(¢),
Le(my) Le(my)

where the max operator vanishes because the enclosed sum
does not depend on the optimizing variable ¢.

2) Bottleneck-delay cost function: Let Ca(T,p,l) = pels
and C(T,p,¢) =0 for all £ € (m;).

d,T,p) = FA+0TIY = Ay},
f(d, T,p) D, {pe¢; } ggg;;{pe o}

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

3) Cumulative-delay cost function: Let Ca (T, p,¥) = p and
Ci(T,p,¢) =0 for all £ € (m;).

f(d, T,p) = max {(PTA+07T} = pear,,
J £=1

where the max operator vanishes because the enclosed quan-
tity does not depend on the optimizing variable /.

We formulate Problem | for the class of cost functions
given by (6) as a Mixed Integer Linear Programming (MILP)
problem. The formulation is based on the on the flow MILP
formulation of the shortest path problem between a source
and a sink. Thus, we add a source state ¢}, p and a sink
state g7, p to the product automaton P(j). The source is
connected only to the initial states ()i, p by transitions of
weight E;,;¢ p. The sink receives transitions of weight 0 from
all final states of P(j), i.e., the set of weighted transitions
{(¢:4Fina1.p+Om,) | g € Fp} are added to P(j).

The MILP formulation is as follows

min A\ 7
Subject to:
A > CA(T,p,O)A+ Cr (T, p, L)1,V € (m;) (8)
Eor €{0,1},V(v,0") € 6p)
L v = ql;]nt,??

Yo b — D Eww=1-1 v=qup (10
(v,v7)Edp (v',v)Edp 0, otherwise

Y b SLVweEQp (11)
(v,0")ESP
A= " &uWp(v,0) (12)

(v,0")Edp

Ie{0,1}m (13)
— M1, ~)<A<M-I (14)

where M € N is a large enough constant.

In the formulation, the max operator in the cost function
is translated into the set of linear constraints in (8), and
an auxiliary variable A is used as a cost function instead.
We associate with each transition of P(j) a binary variable
&0 (9) that indicates whether (v, v') is present in the solution.
The solution can only be composed of a single simple (acyclic)
path from the source ¢, p to the sink ¢%j,, p, and is
enforced by the flow conservation constraint in (10), and the
bound on the number of nodes’ successors in (11). Thus,
the delay vector is simply the weighted sum of all transition
variables (12). The binary vector I of delay violation (13)
indicates if the demands’ deadlines have been met. It is
captured by the constraints in (14) using the big M trick, where
M is a constant larger than the maximum absolute value of
the delay (which can be computed from P(j) as the longest
simple path from Q). p to a state g € Fp).

After solving the MILP problem, we can recover the optimal
accepting run p* = v;...v, as follows: starting from the
initial state v; € Qjns,p With gq% oV = 1, we iteratively
compute the next state vi11, k € {J,...,n — 1}, satisfying
Evp,vppr = 1 until a final state v, € Fp is reached.

Note that p* defines a prefix 77, = §;jsj4+1...5, of the
desired optimal trace suffix 77, via projection onto 7 (i.e.,
first component of product automaton states); in fact any trace
suffix 7;.oc with the prefix Tj*n is a solution to Problem 1.
Hence, we take 77 = 6;8;41...8n - S, = 7/, - 85, The op-
timal pick-up decision function Pz’ck]*-:oo is also obtained from
p*: assuming that Vj < k < n, vp = (Sk,q1,ks - - -, Gm, k> D)
we set Pick’. . (D;) = ¢, where D; ¢ Dy_1 and D; € Dy for
all D; € Dactiv(t;) \ Dinprog(t;—1).

Theorem 1. The suggested trace suffix 7., and the pick-up
decision function Pick;:oo are the optimal solution to Problem
I at time t; for the trace prefix T{; = Sinit...5; pick-
up decision function Pick, and the set of active demands
Dactiv(t;) # 0.

Proof. The proof follows directly from the discussion above.
Namely, it holds that 77, is a minimal good prefix from the
fact that p,, € Fp and from the construction of P. Further-
more, d(t;) = >, e, Wp(v, ') for the trace 71,51 - 77,
at time t;. Hence, f(d(tj), T(tj),p(tj)) = J(Tl;j_l . Tﬁj,j)
at time ;. O

Since we solve Problem 1 iteratively online, the trace suffix
can change influencing also servicing of demands that are
already in progress; such a change, however, occurs only in
a case when a new demand arrives and still ensures that the
demands in progress get completed before new demands are
picked up. In other words, frequent switching of solutions will
not have undesired impact on overall performance.

D. MILP formulation for three particular cost functions

Next, we instantiate the MILP formulation for the three trace
cost functions described in Sec. III.

1) Highest-priority-first cost function: Take Ca(T,p,t) =
1 and C’I(T,.p,é) = MZZ/E(W') |Dactiv(t;) P2 ¢ for all
¢ € (m;), which results in the MILP:

min Y Ag+ MY [Dactiv(t;)|"* I(0) (15)
(=1 (=1
Subject to: (9),(10), (11),(12),(13),(14),

where all the constrains to encode the max operator are
dropped because all weights C are equal and all C'a are one.
For that reason, A, and constraint (8) are not needed; instead
we can just optimize the cost function directly.

2) Bottleneck-delay cost function: Setting Ca (T, p,¥l) =
peCe and Cr(T,p,¢) = 0 for all £ € (m;) results in the
MILP:

min A (16)
Subject to: (9), (10), (11),(12)
A > pelAg, V€ (m7> (17

where the indicator variables I and corresponding constraints
(14) were dropped because the weight functions C; are zero
for all demands. Rewriting constraint (8) explicitly using
CA(T,p,?) = peCe and Cr (T, p,¥) = 0, results in (17).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

3) Cumulative-delay cost function: Setting Ca(T,p,{) =
p and C[(T,p,¥) =0 for all £ € (m;) results in the LP:

Z fv,v/ (PTWP(U»’U/))

(v,v)€dp
Subject to: (10) and &, v > 0

min (18)

Since the weight functions C are zero for all demands,
we discarded the indicator variables I and corresponding
constraints (14). Furthermore, all weight functions Ca are
equal, we can drop the max operator constraints, and the cost
function becomes the trace function, i.e., the sum of all de-
mands’ delays weighted by their priorities. Lastly, the problem
can be solved as an LP because the flow constraints are totally
unimodular [44]. The successors bound constraints in (11) can
also be dropped, because minimizing the cumulative delay cost
ensures that the optimal solution is a simple path [44].

E. Execution procedure at time t;

Given the optimal accepting run of p* = v;,..., v, of P(j),
the optimal trace suffix Tj*:OC = 5;...5, - 5% of T, and the
consistent pick-up decision function Pickj. ., at time ¢;, the
system execution proceeds as follows:

o The transition (s;,s;4+1) is taken in 7 and the current

state of 7 at time ?;,, becomes 5,1 = 5;41;

o The transition (proj;, (v;), L(s;), proj;,(vj4+1)) € d;, is
taken in A;,, for all £ € (my); If proj;, (v;y1) & F;, then
include D;, in Dactiv(t;41) and the current state of A;,
at time t;1; becomes ¢;, j+1 = proj;, (vji1).

At time tj+1

o Include all newly arrived demands D;, such that t; <
tDi < tj+1 in Dactiv(tj+1);

« Update the set of demands in progress Dinprog(t;11) =
Dactiv(tj+1) N{D; | Pick;:oofl(Di) <j+1}

o If Dactiv(tji1) = {Di, ... Dim{.+1} # 0 # Dactiv(t;)
then compute P(j + 1) = T ®JA¢/1 ®...® Az‘;n_ﬂ at
time ¢;4; as in Def. 8, and compute p* for P(jJ +1)
and the optimal suffix 77, ;. through the MILP problem
from (7)-(13); else

o If Dactiv(t;y1) = () then choose 77, ;. = 54,13

e Repeat the execution procedure at time ¢;y; with
Ti 100 PiCKT 1 o0

Remark 4. Note that the way we define and approach the
problem allows to apply the proposed solution in a straight-
forward way also to dynamic road networks, where the weight
Sfunction W : R x Ry — R is time-dependent and captures
e.g., different levels of congestion during different daytimes.

Complexity. The complexity of our approach is driven by
the two components: product model construction and MILP
computation. The complexity of the product construction
is given by the sizes of the factor models, ie., O(|R] -

21Q A;, |)- The construction of the MILP encoding is lin-
ear in the size of the product model O(|@Qp|). Solving MILPs
is know to be an NP-complete problem. Nevertheless, modern
solvers (e.g. Gurobi [45]) are able to solve large problem
instances with millions of decision variables. Furthermore,

the problems solved on the product models are shortest path
problems with some additional decisions roughly of the order
of |D|. Since the shortest path problem (encoded as a network
flow problem) is totally unimodular, the LP solution is actually
also the ILP solution. Our hypothesis for our setting is that the
MILP in our case is very close to a shortest path problem (i.e.,
“close” to being unimodular). Hence, the solver converges fast
to an optimal solution. This contrasts with Traveling Salesman
Problems which have a very different problem structure.

V. LINEAR-TIME GRAPH SEARCH-BASED SOLUTION

Section IV considered the Problem 1| for a large class
of cost functions J. The proposed approach constructs a
product automata and computes the solution path using a
MILP encoding whenever new demands arrive. For a sub-
class of cost functions, we introduce a graph-search method
to compute the optimal path p* with linear complexity in the
size of P(j).

Assumption 2 (Translation Monotonic). Let Dactiv(t;) =
{Dil N Dm]. }, and d(tj), dl(tj) S RgLJ with

F(d(t;), T(t;), p(t;)) < f(d'(t;), T(t;), p(t;)).
We assume that for all v € R™

fd(ty) + v, T(t;), p(t))) < f(d'(t;) + v, T(t;), p(ty)).

Algorithm 1: optAcc(P(j), f)

Input: Product automaton P(j) and cost function f
satisfying Assumption 2
Output: Optimal accepting run p*

1 forall p € Qp do
2 e(v) < oo; pred(v) < None
L Add v to Unwvisited;

e(Gimit,P) = Einit, P, Yqinit,p € Qinit, P
while Unwvisited # () do
Chan argminv’eUnvzsitedf(e(vl)’ T(t])? p(tj))
remove v from Unvisited
forall (v,v') € 6p do
cand « f(e(v) + Wp(v,v), T(t;), p(t;))
10 if cand < f(e(v'), T(t;),p(t;)) then
11 e(v') + e(v) + Wp(v,v')
12 pred(v') < v

13 vy < argmin, - f(e(v'), T(t;), p(t;))
14 U< vf; pF 4 vp

15 while p ¢ Qinit,p do

16 L v < pred(p); p* < v-p*;

w

e ® N U

17 return p*

Trivially, Assumption 2 holds for the cumulative-delay cost
function J. in (3). For the other two costs, highest-priority-
first in (1) and the bottleneck-delay in (2), the assumption does
not hold. A modified version of the highest-priority-first cost
function for which Assumption 2 is true is

D

D;eDactiv(ty)

J’/L<T7 PZC]{J,]) = |DaCt’iU(tj) il AL

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

The cost J;, captures the quantity of the delay rather than its
presence and absence.

A. Graph search

Assumption 2 allows us to find the desired optimal accept-
ing run in P(j) using a linear-time graph algorithm based on
the well-known Dijkstra shortest path search instead of solving
a more computationally demanding MILP problem.

The goal is to compute the path in P(j) with minimum
weight that ends in an accepting state Fp(j). Similar to
Dijkstra’s algorithm, our method OptAcc(P(j), f) shown
in Algorithm | constructs a spanning forest from the initial
states in a greedy way. However, the weights in our case are
vector-values, and the branch cost is evaluated using the cost
function f. The initialization is step adds all states to the queue
of unvisited states, and sets their predecessors to None and
branch cost to oo except for the initial states Qi » (lines 2
and 4). Next, the algorithm iterates until all states are visited.
In each iteration, it find and removes from the unvisited state
v with the smallest branch cost f(e(v), T(t;), p(¢;)) (line 6).
For all states v that v can reach, the algorithm checks whether
the cost to v’ can be decreased using the path to v (line 10). In
case this holds, the cost is updated and the predecessor of v’
becomes v (lines 10-12). After the all states have been visited,
the algorithm returns the run in P that ends in an accepting
state and has minimum weight (lines 15-16).

Once we compute p* using OptAcc(P(j), f) the remainder
of the approach to Problem 1 does not differ from the

solution in Sec. IV; we project p* onto a trace fragment
*

Tin = $§jSj+1...Sn of the desired optimal trace suffix
* — % w 3 y *
Troo = Tjip * Sy, and also use it to reconstruct Pick?,

B. Characterization

Assumption 2 is sufficient for Algorithm 1 to compute an
optimal run. It does not provide a simple way to check cost
functions. In this section, we characterize the class of cost
functions induced by Assumption 2. We denote the set of all
translation monotonic functions by J<.

Theorem 2 (Translation Monotonic Functions). If f € J< is
a continuous function, then there exist g : R — R and a € R"
such that f(z) = g(a™z).

The proof is in Appendix A.

VI. SIMULATION RESULTS

In this section, we present a series of simulation results to
demonstrate the scalability of our approach in a large, realistic
case study and compare the performance of the three proposed
cost functions. We perform simulations on the middle part
of Manhattan (see Fig. 1). The road network has 184 nodes
and edges weighted by time-varying travel travel duration
estimates obtained from real taxi driving data. For details
about the dataset see the work by [46]. We randomly generate
demands from 10 scLTL patterns that arrive at times according
to a homogeneous Poisson process and have deadlines deter-
mined by an upper bound weighted by a uniformly distributed

scalar weight. The simulation is ran over 24 hour time window.
Since we focus on scalability, we present macro-scale analyses
of the results in terms of: i) the three cost functions, and ii)
runtime performance, rather than showing route plans.

The algorithms were implemented in Python2 based on
LOMAP [27] and networkx [47]. The LTL to automata trans-
lation within LOMAP is done using the Spot suite [48].
Gurobi was used to solve the MILPs associated with the
bottleneck delay and highest priority cost functions [45]. For
the cumulative delay cost function, we used the graph search
method described in Alg. 1.

Vehicle: The vehicle’s capacity is limited to 3.

Network: The transition system corresponds to a 125-block
area in mid-Manhattan, and has 184 nodes and 355 weighted
transitions. The transition weights are taken from the taxi
dataset, and are available in one hour increments. We used
travel duration estimates corresponding to a weekday. We
assume that the transition system is strongly connected such
that the vehicle can visit any location from any other location

in the network.
Demands: We randomly generated demands from a set of
template scLTL formulas:

é1(po,p1,p2) = Fpo A Fp1 A Fpa

@2(po, p1,p2) = F(po A F(p1 A Fpz))
@3(po, p1,p2) = Fpo AN F(p1 V p2)
@4(po, p1,p2) = F(po A F(p1 V p2))
¢5(po, p1,p2,m0) = Fpo A Fpr A —nolU p2
$6(po, p1,p2,m0) = F(po A Fp1 A —mnoU p2)
¢7(po, ..., ps) = F(po V p1) A F(p2 V p3s) A F(paVps)
¢s(po, .. .,ps) = F((po Vp1) AF((p2Vps) A F(psVps)))
$9(po, - --,p6) = Fpo A F(p1 A F(p2 V ps3))
A F(paV (ps A Fps))
#10(Po, - - -, p6) = F(po A F(p1 A Fp2 A Fps))

V F(p1 A F(paVps) A Fpe)

where the parameters py, ..., pg, and ng are labels associated
with states of the transition system. The labels pg, ..., pg
hold true at a single location, respectively, define the locations
the vehicles needs to visit to satisfy the specification. Label
ng holds true at multiple locations, and determines a circular
area that the vehicle should avoid before visiting p,. Locations
are generated such that the demands can be satisfied, i.e., the
graphs remains strongly connected after removing the states
labeled with ng. Additionally, we generate random pick-up
locations, distinct from all other locations with labels from
the associated demand.

Next we define the demands’ arrival times and deadlines.
The demands’ arrival is modeled as a homogeneous Poisson
process with rate o, i.e., the inter-arrival times are i.i.d.
exponentially distributed with mean 1/co. The deadlines are
computed as aT;, where o ~ Unif(1,2) is an uniformly
distributed scalar weight, and 7T; is an upper bound on the
demand i’s service time. Formally, we have

T; = \S| ZW (s, Spick,i) +|Si| * max W(s,s), (19)

ses s,s'€S;
where the first term is mean duration to arrive at the pickup
location sj;.;; of demand i, the second term is the an

upper bound on visiting all locations of interest S; =

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

{Spick,i»Pos - - -, D6} for demand i, and W (s,s’) is the min-
imum duration of a path between s and s’ in 7. For this
computation, we used the estimated travel durations at 9am
from [46]. The rate of the Poisson process @ was chosen such
that within 19 hours we have a mean of 30 demand arrivals,
ie. w = 19 -3600/30 [sec]. Within the 24 hour simulation
window, 36 demands were generated as shown in Fig. 4.
Finally, the demands’ priorities and capacities are randomly
generated uniformly between 1 and 5, and between 1 and
2, respectively. The finite state automata for ¢q,..., ¢1o are
computed before the simulation, and have 8, 4, 4, 3, 8, 5, §, 4,
18, 18 nodes, and 20, 7, 8, 5, 20, 12, 20, 7, 57, 55 transitions.

Je Jy Jh JEDF
Routing 0.101 £ 0.121 4.133 £10.428 0.369 + 0.531 0.082 + 0.044
runtime [0.038,0.841] [0.053,48.670] [0.042,2.242] [0.038,0.200]
Build P 0.098 £ 0.116 1.413 £3.137 0.217 +0.246 0.081 + 0.043
runtime [0.037,0.803] [0.050,13.996] [0.039,1.073] [0.038,0.199]
|S| 8.2 +4.01 14.02 £ 7.38 11.38 £ 4.95 8.15 +4.54
in T [4, 30] [5,37] (4, 24] [4, 20]
|R| 61.7 & 62.4 195.3 £176.5 125.0 +=104.6 45.4 + 28.6
in T 12, 400] 20, 698] [12, 387] (12, 110]
1Qp| 140 + 428 3671 £+ 8165 491 4+ 765 34 + 23
in P 10, 2711] 14, 32419] [14, 2009] [10, 116]
|6p] 1611 4+ 5800 73628 4 173443 7569 + 14072 180 + 150
in P [30,36342] [52,728792] [42,58168] [30, 896]
|Demands| 1.184 +0.481 2.083 £ 1.037 1.809 + 0.914 1.417 £ 0.666
[1,3] [1,4] (1,4] [1,3]
A —7123 3907 —4931 3912 —5123 & 6146 —6355 £ 4336

[—15101, —1278] [—15015, 1031] [—14248, 18402][—15101, 1768]

TABLE 1V: Performance results are shown from 24-hour
simulations of mid-Manhattan for the three cost functions:
cumulative delay J., bottleneck delay J,, and highest priority
first Jp,, with capacity constraints and pick-up locations. Each
entry of the table shows the mean and standard deviation of
each metric, and below its range.

A. Results and discussion

We report results for the routing with the three cost func-
tions: cumulative delay cost .J., bottleneck delay cost .Jp,
and highest priority first cost .Jp, with capacity and pick-
up location constraints. We also consider a heuristic baseline
method, earliest deadline first, denoted by Jgpr. A summary
of the algorithms’ performance is shown in Table IV. Note that
the reported size of 7 there takes into account the reduction
of redundant states, see Remark 3.

Runtime performance. In Table IV, we observe that the
construction of the weighted product automata P dominates
the execution time for the cumulative delay cost function,
while it is significantly smaller fraction of the total routing
time in the case of the bottleneck delay and highest priority
first cost functions. This is not surprising, since in the cumu-
lative case the computation of the optimal policy is an LP,
which can be solved with Dijkstra’s algorithm. The other two
cases require binary variables, and thus can be in worst case
exponential in the number of binary variables. Remarkably,
the MILP solver is able to handle problems with up to a few
hundred thousand binary variables within a couple of minutes.
We hypothesize that the performance is due to the structure
of our problems, which are very close shortest path problems

with combinatorial choices that may depend mostly on the
number of demands.

Cost performance. The routing algorithms satisfied the
generated request in such a way that only a small number
demands were active at any given time, see Table. IV. The
delays on the last row of the table are comparable for J., J,
and Jj. A detailed account of the performance with respect to
cost of the algorithm is in Fig. 4, Fig. 5 and Fig. 6. The triplet
of plots in each of these figures are obtained with the use
of the same, randomly generated, sequence of demands. The
magnitude of all three cost functions depends on the number
of active demands. Fig. 5 shows this dependency for each level
of cost throughout the simulation of 24-hours.

To show the differences between the three cost functions,
we computed all three of them on the simulation trajectory
obtained by the each routing scheme, see Fig. 6. In the
graphs for J, shown in Fig. 6a, observe that as the routing
is performed to benefit all demands on average, the ones with
maximum priority are not the first to be satisfied. This is
suggested by the rising bottleneck cost. The graphs for J;
shown in Fig. 6b again highlight the difference between the
routing strategies in the cases where falls or jumps in the
cumulative delay cost are not mirrored by the bottleneck cost,
which masks lower-priority weighted delays. In this regard,
Jp might be less affected than .J. by dynamics of demand
arrival, and is more stable. The case of J}, is the most striking
in the difference of routing decisions as shown Fig. 6¢. The
rising costs of J. and J, are due to an interesting masking
behavior of J,. If a demand cannot be satisfied by its deadline
regardless of priority, then it is essentially a constant term in
the highest priority first cost function. Thus, such a demand
must wait until all other demands that can be satisfied by their
deadline are done.

These observations are corroborated by looking at the
arrival, deadline, and service time of each demand given in
Fig. 4. The graphs highlight the way demands are preempted
based on the cost functions. For J. smooths out large delays
in favor of average optima Fig. 4a. However, lower priority
demands may wait longer, until their cost becomes critical,
i.e., their associated term in the cost becomes large enough to
influence the routing decision. In the case of .J, in Fig. 4b we
can observe how lower priority demands are preempted due to
bottleneck masking. The .J,, case has fewer deadline violations.
Some of the demands are preempted for a long time due to
the capacity constraints that limit the number of demands in
progress at any given time (in this case, 2). Lastly, observe
in Fig. 4c the cause of the phenomenon mentioned above for
the highest priority first cost function regarding demands that
cannot be satisfied by their deadline. The demands that need
to wait until all others are done, induce the rising costs J. and
Jp in the graph from Fig. 6c¢.

Baseline. The earliest deadline first method Jgpr selects
the demand with the smallest deadline among the ones in
progress. If there are no demands in progress, then it selects
a demand among the active ones. Unsurprisingly, Jgpr is
the fastest method. It also has reasonable cost performance.
However, compared to J. it is not able to fulfill all demands
by their deadlines. The mean cost performance is between .J,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

e - - g N - - , - N - - — .
g — | Baseline g — Baseline : Baseline g
g3 L with routing g: ~L wWith routing £: With routing £:
53 5: 5: 53
a: =N M 8
o R S S S e e e e R e T I
| - priority 1 * m priority 1 — | - priority 1 | - priority 1
= - Priority 2 —m— = - priority 2 —m =| m-priority 2 —— =| - Priority 2 il
00| priority 3 ————- o Priority 3 — | - priority 3 —— 0| Priority 3 ———
H Priority 4 p—— g Priority 4 a— g Priority 4 - H Priority 4 p—
g Priority 5 e — £ o priority 5 R —— g Priority 5 — g Priority 5 R
& —= S s & Js & —=
Time [hours] Time [hours] Time [hours] Time [hours]
(@ Je (®) J © Jn (d) Jepr

Fig. 4: The demands’ timelines over a 24-hour simulation are shown for each of the four cost functions with capacity constraints
and pick-up locations. In the lower graph, for each demand, the time interval between its arrival and desired deadline is marked
with a solid box, while the time interval to the actual deadline is marked with a line of the same color with diamond endpoints.
The demands’ colors indicate their priority between 1 and 5. The upper graph shows the number of active demands in the ideal
case disregarding routing in black, and in the actual case obtained by executing the routing algorithm with the corresponding

cost function in blue.

0 demands
w1 demands
= 2 demands
= 3 demands
w4 demands

0 demands
= 1 demands
. 2 demands
= 3 demands

0 demands
= 1 demands
= 2 demands oo
= 3 demands
W 4 demands

0 demands
= 1 demands
N 2 demands
= 3 demands

CostJ(t, Pick.j)

Time [hours] ’

(a) Je (b) Jp

Time [hours] T

(d) Jepr

Time thours]

© Jn

Fig. 5: The performance of the algorithms with respect to the costs J., Jp, J and Jgpr are shown in relation to the number

of demands. The cost levels are
associated with the routing call and cost value.

— cumulative
—— bottleneck
highest priority (10°%)

CostJ(x, Pick,)

— cumulative
— bottieneck
highest priority (10-%)

maintained between routing calls. The colors of the column represent the number of demands

— cumulative
— bottleneck
highest priority (10-3)

(W“T‘W“ﬂ“ﬁ

— cumulative
— bottieneck
highest priority (10-%)

| L T e

ERT SRR R

(@) J. (b) Jb

Eﬁ} i
(

" time thours]

©) Jn

R SRR LR

(d) Jepr

Fig. 6: The cross cost performance of the routing algorithm using cost functions J., Jp, J, and Jgpr are shown in Fig. 6a,
Fig. 6b, Fig. 6¢, and Fig. 6d, respectively. In each subfigure, the evaluation of the three cost functions J,, J;, and Jj, is plotted
at each routing decision. Only the associated cost function is used for routing. The cost graphs change whenever the routing

procedure is executed.

and Jp, but with larger deviations. This may be due to the
greedy nature of the procedure. The nature of .J, makes it
mostly incompatible with Jgpr which does not account for
demand priorities.

Discussion. The main insights of the empirical analysis is
that (1) the cumulative delay cost function provides a good
balance of runtime and cost performance and is appropriate
for most cases; (2) the bottleneck delay cost function induces
a less spread out distribution of delays and is appropriate
for cases where we care about equitable demand satisfaction
(albeit with a runtime performance penalty); (3) the highest
priority first cost function disregard overall cost performance
and is appropriate for cases where priorities must be enforced
(e.g., due to premium fees); and (4) the earliest deadline
first method may induce larger delays and is appropriate for
cases where runtime performance is more important than cost

performance.

B. Scalability Analysis

In this section, we investigate the scalability of the pro-
posed routing algorithms. For the analysis, we randomly
generated 20 square N x NN grid networks for each N &
{5,10,15,25,50,75}. The number of states in each network
is N2, while the set of transitions is random and induces
a strongly connected network. The transition durations are
drawn uniformly from {1,...,20}. For each network, we
generated a set of demands the same in Sec. VI. with scLTL
templates {¢1, . .., @10} The number of demands is uniformly
drawn from {2,3,4}. The vehicle capacity is 3.

Results and discussion: As in the previous Manhattan case
study, we report results for the three cost functions: cumulative

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

delay cost J,, bottleneck delay cost J,, and highest priority
first cost .Jp,, with and without pick-up location constraints.

ladiddd [, Sijod

o
= 250 1000 2250 6250 25000 5625.0 25.0 1000 2250 6250 25000 5625.0
es s

No. abstraction edges

o
No. WTS nod No. WTS

(a) States in the abstraction. (b) Transitions in the abstraction.

Fig. 7: Size of abstraction versus number of states in the
network.

The network size does not significantly impact the scalabil-
ity of the routing algorithm. This is expected, since the routing
algorithm first constructs an abstraction of the network using
minimum cost paths between location of interest required
for the active demands, see Remark 3. Fig. 7a and Fig. 7b
show that the number of states and transitions do not increase
significantly with the network size. However, the increased
computation to construct the abstractions of road networks
can be observed in Fig. 8a and Fig. 8b corresponding to the
product automaton construction and overall routing procedure
runtimes, respectively.

The more significant driver of scalability is the number
of active demands. Fig. 8c and Fig. 8d show the product
automaton construction and overall routing procedure runtimes
for each number of active demands in our analysis, respec-
tively. The increase in runtime is again expected, since the
size of the product automaton used for routing (Definition 8)
increases exponentially with the number of active demands.
Fig. 8 shows that routing without pick-up constraints take less
time. This follows from the additional locations of interests
that need to be considered in the network abstraction. The
product automata construction is the same between the three
algorithms (with and without pick-ups), and the runtime does
not vary significantly across them as seen in Fig. 8a and
Fig. 8c.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a route planning framework that enables to
consider a variety of complex transportation requests by using
syntactically co-safe Linear Temporal Logic (scLTL) and to
systematically handle situations, when all of these requests
cannot be met simultaneously by a set deadline. scLTL is
rigorous, yet it builds on temporal operators, whose seman-
tics are aligned with the intuitive meaning — operators next,
eventually, until express that an event or a propositions should
hold in the next time step, eventually, or until another event
or proposition becomes true. Nesting and combining these
operators gives scLTL a rich expressive power. For example,
one may express that certain sub-tasks should happen in a
sequence (a customer should visit location A, then B, then C
expressed as F(AAF(BAFCQ))), that a set of sub-tasks should
happen in an arbitrary order (packages should be dropped of at
locations A, B, and C, expressed as FAAFBAFC), that a sub-
task can be met in various way (a customer should visit any
shopping mall, expressed as Fmall, where multiple locations
in the map are labeled with the atomic proposition mall). The

route planning framework can handle any combination of such
requests. Furthermore, each demand in scLTL is associated
with an arrival time, a pick-up location, a deadline, a priority,
and the needed capacity of the servicing vehicle, e.g., if the
demand is issued by a group of customers that wish to travel
together.

We modeled the motion of the vehicle in a road network
as a finite Weighted Transition System (WTS). The locations
of interests represent the WTS states connected by road
network segments and are correspondingly labeled with atomic
propositions that hold true therein (such as with the atomic
proposition mall mentioned above). The transitions of the
WTS model the capability of the vehicle to traverse the road
segments. Estimated travel durations along roads are captured
as time-varying weights on the WTS’ transitions.

The goal was to plan the path of the vehicle, i.e., a sequence
of WTS states, along with customer pick-up and drop-off deci-
sions, to satisfy all the demands with the least possible overall
cost that balances demands’ delays and priorities. We proposed
three different costs that a user of our framework may be
interested in — the highest-priority-first cost, the bottleneck-
delay cost, and the cumulative-delay cost. We introduced
a MILP-based approach that computes minimal cost plans.
For a special subclass of criteria, we derived an efficient,
graph-search algorithm. As the requests arrive gradually, the
plan is periodically recomputed and it holds that at any time
instant, it is provably the optimal one among all the plans
that have the same history. We showed the performance of
the proposed framework in large scale simulations involving
a large road network corresponding to part of mid-Manhattan
with time-varying travel duration estimates, and large number
of demands. In comparison to the state of the art, this work is
to our best knowledge the first one to address route planning
under complex, gradually arriving, prioritized and possibly
mutually unsatisfiable transportation requests.

Our future work involves incorporating other aspects that
will further generalize our framework: we aim to investigate
extension to multi-agent vehicle routing problems, incorpora-
tion of time spent in the node of the network (e.g., correspond-
ing to customers spending time in locations), timed temporal
logic for request specification to allow for assignment of
deadlines to sub-tasks, stochastic models of the road network
to capture how the changing road network link capacity,
including how our rooting affects congestion.

ACKNOWLEDGMENT

This work is supported in part by the Singapore MIT
Alliance for Research and Technology (The Future of Urban
Mobility project), by the NSF CNS-1446151 and I1S-1723995,
the NSF Grant 1723943, and the Office of Naval Research
(ONR) Grant N00014-18-1-2830. Toyota Research Institute
("TRI”) provided funds to assist some of the authors with
their research, but this article solely reflects the opinions and
conclusions of its authors, and not TRI or any other Toyota
entity.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

ts_nodes.
=3 250

k3 ts_nodes
£

=3 1000 g
2

250
3 1000
= 2250
3 6250
. 25000
- 56250

3 2250

3
3 6250 g
H . 2500.0 H
2 - 5625.0
& 10
107

c @ [8P H Hp c I3
Algorithm

[8 " P
Algorithm

(a) PA construction time (b) Overall routing time

no_demands
= 20
= 30
-0

c @ [3 " Hp c 3 [3 H Hp
Algorithm Agorithm

(c) PA construction time (d) Overall routing time

Fig. 8: Runtime performance for cumulative delay cost (C), bottleneck delay cost (B), and highest priority first cost (H). The
cases with pick-up location constraints are marked with P. For each network size N2, N € {5, 10, 15, 25,50, 75}, we generated

20 random networks with random weights and demands.

APPENDIX
PROOF OF THEOREM 2

First, we introduce a intermediate results before proceeding
to the proof of Theorem 2. Note that if f € J<, then (f— f(0))
is also in J<. Thus, without loss of generality, we assume that
f£(0) =0 for all f € J< throughout the rest of the section.

Proposition 1. If f € J<, and x1, x5 € R™ such that f(x,) ~
f(x2), then f(x1 +w) ~ f(xe + w) for all w € R", where
~e{<,=}

Proof. Case ~ is =. Let w € R™. We have

[= fla) = {f@l) Sy

(w2 +w)

= f(CE1+w) = I w) = T2 w
_{ oty =St w) = faatw)

<f
flxr+w) > f
Case ~ is <. Assume there exists w € R™ such that f(z1 +
w) > f(xe + w). It follows that f(x; +w + w') > f(xg +
w4 w') for all w’ € R™. If we set w’ = —w, then we have
f(x1) > f(x2) which contradicts the hypothesis. O

Proposition 2. If f € J< continuous, and x1,x2 € R™ such
that f(z1) ~ f(z2), then f(axy) ~ f(axe) for all o € Ry,
where ~€ {<,<,=}. For equality (~ is =), the property
holds for any o € R.

Proof. Consider @ = p € Z. It follows by induction on p,

f(p+ Dz1) = f(z1 +pr1) ~ f(z2 + pr1)
~ f(z2 +pr2) = f(22 + p22)

where we used Prop. 1, and the induction hypothesis. The base
case is given by Prop. 1.

Consider a = %, q € Z4. Denote by ¢ be negation of
the inequality ~. Assume f(axz1) # f(axs), it follows that
flgazr) # f(qazxs), or equivalently f(xz1) ¢ f(x2), where
we used the first case o € Z to obtain the implication. This
leads to a contradiction with the hypothesis f(x1) ~ f(x2).

The previous two cases imply that the proposition holds for
o= g € Q4 rational. The full statement follows from the
continuity of f.

Lastly, the case ~ is = follows from setting w = a - (x1 +
z2), a >0, ie., f(-az1) = f(—azs) = f(azs) = f(az1),
and the case for o > 0 above. O

Proposition 3. Let f € J< continuous, and x1,x2 € R".
There exists A1, Ao € R not both zero such that f(\xz1) =

J(Xams).

Proof. Assume that for all A\; and Ao not both zero we
have f(A1z1) # f(X2x2). Since f is continuous, it follows
that the sets In, = {f(Mz1)}x,, and In, = {f(A2x2)}s,
are intervals. Thus, we have either f(A\jz1) < f(Aaxs) or
FfAqz1) > f(Aqme) for all A1, Ao. Without loss of generality,
consider f(A1z1) < f(Aama). If we set Ay = —1, Ao = 1,
and w = x1, then f(—z1 +w) = f(0) =0 < f(ze +w) =
f(za +). If we set Ay = 1, Ay = —1, and w = x5, then
flzr +w) = flx1 + 22) < f(—x2 +w) = f(0) = 0. We
arrive at a contradiction. Thus, there exists A\; and Ao, not both
zero, such that f(Ajz1) = f(Aaxa). O

Let {eq,..., ey} denote the standard basis of R™. Define c;;
such that f(aje;) = f(ouje;), foralli # j, 4,5 € {1,...,n}.

Proposition 4. Let f € J< continuous. If aj; = 0, then
flae;) =0foralla € Rwithi,j € {1,...,n} and oj; € R.

Proof. Let aj; = 0. By definition and Prop. 3, there exists
a;; # 0 such that f(aje;) = f(asje;) = f(0) = 0. Thus,
using Prop. 2 we have f(ae;) = f(azj;ei) = f(0) = 0,

where o € R. O

Proposition 5. Let f € F continuous. If f(ae;) = 0 for all
a €R then f(x) = f(z — zie;).

Proof. By definition, we have f(ae;) = f(0) = f(z+ae;) =
f(z), where we set w = & € R™. Take o = —x;, and we
obtain the result. O

Proof of Theorem 2. Let f be a translation monotonic func-
tion not identically zero. Without loss of generality due to
Prop. 5, assume f(aep) # 0. We show that f(x) can be written
as a function of the first component of x as follows

f(z) = f(zier + ...+ Tn_1€n—1 + Tnen)
= f(zier + ...+ Tp_1€n—1 + Tpaner)

where a, = % If we repeat the process for all other i €
{2,...,n — 1}, then we arrive at

f@) = f((arm1 + ...+ anzn)er) = f((a" @)er) ,

Qi1
@14

where a1 = 1, and a; =

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

We need to show that ay; # 0 for all ¢ € {2,...,n}.
Assume that ay; = 0, then by Prop. 4 we have f(ae;) =0
for all o, which leads to a contradiction.

Lastly, we obtain the statement by defining g(y) = f(yeq).
Thus, f(z) = g(a®z). O

[1]

[2

—

[3]

[4]

[5]

[6

=

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

A. Buchegger, K. Lassnig, S. Loigge, C. Miihlbacher, and G. Steinbauer,
“An Autonomous Vehicle for Parcel Delivery in Urban Areas,” in 21st
International Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 2961-2967.

S. Tanaka, T. Senoo, and M. Ishikawa, “High-speed UAV Delivery Sys-
tem with Non-stop Parcel Handover Using High-speed Visual Control,”
in IEEE Intelligent Transportation Systems Conference (ITSC), 2019,
pp. 4449-4455.

D. N. Das, R. Sewani, J. Wang, and M. K. Tiwari, “Synchronized Truck
and Drone Routing in Package Delivery Logistics,” IEEE Transactions
on Intelligent Transportation Systems, pp. 1-11, 2020.

S. Sawadsitang, D. Niyato, P-S. Tan, and P. Wang, “Joint Ground
and Aerial Package Delivery Services: A Stochastic Optimization
Approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 6, pp. 2241-2254, 2019.

M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic Load
Balancing for Mobility-on-Demand Systems,” International Journal of
Robotics Research, vol. 31, no. 7, pp. 839-854, 2012.

J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-demand
systems: A reinforcement learning approach,” in IEEE 20th International
Conference on Intelligent Transportation Systems, 2017, pp. 220-225.
F. Rossi, R. Zhang, Y. Hindy, and M. Pavone, “Routing autonomous
vehicles in congested transportation networks: structural properties and
coordination algorithms,” Autonomous Robots, vol. 42, no. 7, pp. 1427-
1442, October 2018.

M. Gueriau, F. Cugurullo, R. A. Acheampong, and I. Dusparic, “Shared
Autonomous Mobility on Demand: A Learning-Based Approach and Its
Performance in the Presence of Traffic Congestion,” IEEE Intelligent
Transportation Systems Magazine, vol. 12, no. 4, pp. 208-218, 2020.
F. Miao, S. Han, A. M. Hendawi, M. E. Khalefa, J. A. Stankovic, and
G. J. Pappas, “Data-Driven Distributionally Robust Vehicle Balancing
Using Dynamic Region Partitions,” in ACM/IEEE 8th International
Conference on Cyber-Physical Systems, April 2017, pp. 261-272.

M. Salazar, M. Tsao, I. Aguiar, M. Schiffer, and M. Pavone, “A
congestion-aware routing scheme for autonomous mobility-on-demand
systems,” in European Control Conference, 2019.

J. Alonso-Mora, A. Wallar, and D. Rus, “Predictive routing for au-
tonomous mobility-on-demand systems with ride-sharing,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
September 2017, pp. 3583-3590.

D. O. Santos and E. C. Xavier, “Taxi and Ride Sharing: A Dynamic
Dial-a-Ride Problem with Money as an Incentive,” Expert Syst. Appl.,
vol. 42, no. 19, pp. 6728-6737, 2015.

F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482-1504, 2011.

M. Owais and A. Alshehri, “Pareto optimal path generation algorithm
in stochastic transportation networks,” IEEE Access, vol. 8, pp. 58 970-
58981, 2020.

H.-K. Chen, C.-F. Hsueh, and M.-S. Chang, “The real-time time-
dependent vehicle routing problem,” Transp. Res. Part E: Logistics and
Transportation Review, vol. 42, no. 5, pp. 383-408, 2006.

Q. Mu, Z. Fu, J. Lysgaard, and R. Eglese, “Disruption management of
the vehicle routing problem with vehicle breakdown,” Journal of the
Operational Research Society, vol. 62, no. 4, pp. 742-749, 2011.

J. Zhang, K. Luo, A. M. Florio, and T. Van Woensel, “Solving large-scale
dynamic vehicle routing problems with stochastic requests,” European
Journal of Operational Research, vol. 306, no. 2, pp. 596-614, 2023.
H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 211-236, 2018.
C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, no. 1, pp. 115-140, 2019.

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-logic:
Control of multi-drone fleets with temporal logic objectives,” in
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, ser. ICCPS *18. IEEE Press, 2018, p. 186i197.
[Online]. Available: https://doi.org/10.1109/ICCPS.2018.00026

J. Tumova, L. I. R. Castro, S. Karaman, E. Frazzoli, and D. Rus,
“Minimum-violation Itl planning with conflicting specifications,” in
IEEE American Control Conference, 2013, pp. 200-205.

J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating Control Strategy Synthesis with Safety Rules,” in Intl Conf on
Hybrid Systems: Computation and Control, 2013, pp. 1-10.

M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “Iterative Temporal Motion Planning for Hybrid Systems in Par-
tially Unknown Environments,” in International Conference on Hybrid
Systems: Computation and Control (HSCC), 2013, pp. 353-362.

K. Kim and G. Fainekos, “Approximate Solutions for the Minimal
Revision Problem of Specification Automata,” in [EEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 265-271.

M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218-235, 2015.

S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal Path Planning for
Surveillance with Temporal Logic Constraints,” International Journal of
Robotics Research, vol. 30, no. 14, pp. 1695-1708, 2011.

A. Ulusoy, S. Smith, X. Ding, C. Belta, and D. Rus, “Optimality
and Robustness in Multi-Robot Path Planning with Temporal Logic
Constraints,” International Journal of Robotics Research, vol. 32, no. 8,
pp. 889-911, 2013.

M. Quottrup, T. Bak, and R. Zamanabadi, “Multi-Robot Planning:
A Timed Automata Approach,” in IEEE International Conference on
Robotics and Automation (ICRA), 2004, pp. 4417-4422.

J. Liu and P. Prabhakar, “Switching control of dynamical systems from
metric temporal logic specifications,” in IEEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 5333-5338.

C. I. Vasile, V. Raman, and S. Karaman, “Sampling-based Synthesis of
Maximally-Satisfying Controllers for Temporal Logic Specifications,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, September 2017, pp. 3840-3847.

S. Karaman and E. Frazzoli, “Vehicle Routing Problem with Metric
Temporal Logic Specifications,” in IEEE Conference on Decision and
Control (CDC), 2008, pp. 3953-3958.

Y. Zhou, D. Maity, and J. S. Baras, “Optimal Mission Planner with
Timed Temporal Logic Constraints,” in European Control Conference
(ECC). IEEE, 2015.

V. Raman, A. Donzé, D. Sadigh, R. Murray, and S. Seshia, “Reactive
Synthesis from Signal Temporal Logic Specifications,” in Intl Conf on
Hybrid Systems: Computation and Control, 2015, pp. 239-248.

S. Hustiu, D. V. Dimarogonas, C. Mahulea, and M. Kloetzer, “Multi-
robot motion planning under mitl specifications based on time petri nets,”
in 2023 European Control Conference (ECC), 2023, pp. 1-8.

M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising Motion
Planning under Linear Temporal Logic Specifications in Partially Known
Workspaces,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2013, pp. 5010-5017.

Y. Chen, J. Tumova, A. Ulusoy, and C. Belta, “Temporal Logic Robot
Control Based on Automata Learning of Environmental Dynamics,”
International Journal of Robotics Research, vol. 32, no. 5, pp. 547—
565, April 2013.

C. L. Vasile, D. Aksaray, and C. Belta, “Time Window Temporal Logic,”
Theoretical Computer Science, vol. 691, no. Supp. C, pp. 27-54, 2017.
D. Aksaray, C. I. Vasile, and C. Belta, “Dynamic Routing of Energy-
Aware Vehicles with Temporal Logic Constraints,” in /[EEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 3141-3146.
J. Tumova, S. Karaman, C. Belta, and D. Rus, “Least-Violating Planning
in Road Networks from Temporal Logic Specifications,” in ACM/IEEE
7th International Conference on Cyber-Physical Systems, 2016, pp. 1-9.
C. L. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in Interna-
tional Conference on Robotics and Automation, 2017, pp. 1481-1488.
O. Kupferman and M. Y. Vardi, “Model Checking of Safety Properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291-314, 2001.
C. L. Vasile and C. Belta, “Sampling-Based Temporal Logic Path
Planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Tokyo, Japan, November 2013, pp. 4817-4822.

J. Tumova and D. V. Dimarogonas, “Decomposition of multi-agent
planning under distributed motion and task LTL specifications,” in [EEE
Annual Conference on Decision and Control, 2015, pp. 7448-7453.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2025.3577010

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, XX 20XX

[44] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, 1st ed. Prentice Hall, February 1993.
I. Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2016.
J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle assign-
ment,” Proceedings of the National Academy of Sciences, vol. 114, no. 3,
pp. 462-467, 2017.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference, CA USA, 2008, pp. 11-15.

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu, “Spot 2.0 — a framework for LTL and w-automata manipulation,”
in International Symposium on Automated Technology for Verification
and Analysis, ser. LNCS, vol. 9938. Springer, 2016, pp. 122-129.

[45]
[46]

[47]

(48]

Cristian-Ioan Vasile (M’11) received B.Sc.,
M.Eng., and Ph.D. degrees from Politehnica Uni-
versity of Bucharest, Romania in 2009, 2011, and
2015, and a Ph.D. degree from Boston University,
USA in 2016. He was a postdoctoral associate in the
Laboratory for Information and Decision Systems
(LIDS), and the Computer Science and Artificial
Intelligence Laboratory (CSAIL) at Massachusetts
Institute of Technology (MIT). He is an Assistant
Professor in the Mechanical Engineering and Me-
chanics department at Lehigh University, Pennsylva-
nia, USA. He leads the Explainable Robotics Lab (ERL). He is also affiliated
with the Computer Science and Engineering department and the Autonomous
and Intelligent Robotics Laboratory (AIRLab) at Lehigh University. His
research goal is to enable robot autonomy via scalable automated synthesis
of explainable plans using motion planning and machine learning.

Jana Tumova is an associate professor at the School
of Electrical Engineering and Computer Science at
KTH Royal Institute of Technology. She received
PhD in computer science from Masaryk Univer-
sity and was awarded ACCESS postdoctoral fellow-
ship at KTH in 2013. She was also a visiting re-
searcher at MIT, Boston University, and Singapore-
MIT Alliance for Research and Technology. Her
research interests include formal methods applied
in decision making, motion planning, and control
of autonomous systems. Among other projects, she
is a recipient of a Swedish Research Council Starting Grant to explore
compositional planning for multi-agent systems under temporal logic goals
and a WASP Expeditions project focusing on design of correct-by-design and
socially acceptable autonomous systems. She is a recipient of the Early Career
Spotlight award at Robotics: Science and Systems 2021.

Sertac Karaman (M) received the S.M. degree
in mechanical engineering and the Ph.D. degree in
electrical engineering and computer science from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 2009 and 2012, respectively.
He is currently an Associate Professor of aeronautics
and astronautics with MIT. He studies the appli-
cations of probability theory, stochastic processes,
stochastic geometry, formal methods, and optimiza-
tion for the design and analysis of high-performance
cyber—physical systems. The application areas of his
research include driverless cars, unmanned aerial vehicles, distributed aerial
surveillance systems, air traffic control, certification and verification of control
systems software, and many others. Dr. Karaman was a recipient of the IEEE
Robotics and Automation Society Early Career Award in 2017, the Office of
Naval Research Young Investigator Award in 2017, the Army Research Office
Young Investigator Award in 2015, and the National Science Foundation
Faculty Career Development (CAREER) Award in 2014.

Calin Belta (F’17) received B.Sc. and M.Sc, degrees
from the Technical University of Iasi, Romania
in 1995 and 1997, and M.Sc. and Ph.D. degrees
from the University of Pennsylvania, Philadelphia,
USA in 2001 and 2003. He is the Brendan Iribe
Endowed Professor in the Department of Electrical
and Computer Engineering and the Department of
Computer Science at the University of Maryland,
College Park. His research focuses on dynamics and
control theory, with particular emphasis on hybrid
and cyber-physical systems, formal synthesis and
verification, and applications in robotics and systems biology. He received
the Air Force Office of Scientific Research Young Investigator Award and the
National Science Foundation CAREER Award. He is a fellow of IEEE.

Daniela Rus (F’09) Daniela Rus is the Andrew
(1956) and Erna Viterbi Professor of Electrical En-
gineering and Computer Science and Director of
the Computer Science and Artificial Intelligence
Laboratory (CSAIL) at MIT. Her research interests
are in robotics and artificial intelligence. The key
focus of her research is to develop the science and
engineering of autonomy. She is a Class of 2002
MacArthur Fellow, a fellow of ACM, AAAI and
IEEE, and a member of the National Academy of
Engineering and of the American Academy of Arts
and Sciences. She is the recipient of the Engelberger Award for robotics. She
earned her Ph.D. in Computer Science from Cornell University.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 07,2025 at 18:43:33 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

