This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/0JCSYS.2025.3612245

U CSS

Received XX September 2021; revised ; accepted XX October 2021; Date of publication XX November 2021; date of current version
XX November 2021. This paper was recommended by Associate Editor F. A. Author.

Digital Object Identifier 10.1109/0JCSYS.2021.Doi Number

Learning-Enabled Iterative Convex
Optimization for Safety-Critical
Model Predictive Control

SHUO LIU' (Student Member, IEEE), ZHE HUANG', JUN ZENG? (Member, IEEE),
KOUSHIL SREENATH 2 (Senior Member, IEEE), AND CALIN A. BELTA 2 (Fellow, IEEE)

1Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
2Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
3Departments of Electrical and Computer Engineering and Computer Science, University of Maryland, College Park, MD 20742 USA

CORRESPONDING AUTHOR: SHUO LIU (e-mail: liushuo@bu.edu)
This work was supported in part by the NSF under grants 11S-2024606 and CMMI-1944722.

ABSTRACT Safety remains a central challenge in control of dynamical systems, particularly when the
boundaries of unsafe sets are complex (e.g., nonconvex, nonsmooth) or unknown. This paper proposes a
learning-enabled framework for safety-critical Model Predictive Control (MPC) that integrates Discrete-
Time High-Order Control Barrier Functions (DHOCBFs) with iterative convex optimization. Unlike
existing methods that primarily address CBFs of relative degree one with fully known unsafe set boundaries,
our approach generalizes to arbitrary relative degrees and addresses scenarios where only samples are
available for the unsafe set boundaries. We extract pixels from unsafe set boundaries and train a neural
network to approximate local linearizations. The learned models are incorporated into the linearized
DHOCBF constraints at each time step within the MPC framework. An iterative convex optimization
procedure is developed to accelerate computation while maintaining formal safety guarantees. The benefits
of computational performance and safe avoidance of obstacles with diverse shapes are examined and
confirmed through numerical results. By bridging model-based control with learning-based environment
modeling, this framework advances safe autonomy for discrete-time systems operating in complex and
partially known settings.

INDEX TERMS Constrained control, optimal control, control barrier function, nonlinear predictive control,

machine learning.

I. INTRODUCTION
A. MOTIVATION
Safety-critical optimal control is a central problem in au-
tonomous systems. For example, reaching a goal while
avoiding obstacles and minimizing energy can be formu-
lated as a constrained optimal control problem by using
continuous-time Control Barrier Functions (CBFs) [1], [2].
By dividing the timeline into small intervals, the problem is
reduced to a (possibly large) number of quadratic programs,
which can be solved at real-time speeds. However, this
approach may be overly aggressive because it does not
anticipate future events.

In [3], the authors use discrete-time CBFs as constraints
inside a discrete-time Model Predictive Control (MPC) prob-

lem, which provides a safer control policy as it incorporates
information about future states over a receding horizon to
establish greater safety margins. However, the computational
time is large and grows rapidly with a larger horizon, since
the optimization is usually nonlinear and non-convex. An
additional problem with this nonlinear MPC formulation is
the feasibility of the optimization. Moreover, it is difficult
to obtain the CBFs from complex environments, i.e., the
boundaries of unsafe sets in the environment are difficult
to describe with known equations.

In this article, we address the above challenges by propos-
ing a convex MPC with linearized, discrete-time CBFs,
under an iterative approach. In contrast with the real-time
iteration (RTI) approach introduced in [4], which solves the
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problem through iterative Newton steps, and the learning
MPC (LMPC) framework [50], which builds invariant safe
sets from iteratively stored trajectories and requires repeated
executions of the same task with an initial feasible tra-
jectory for convergence, our approach iteratively solves a
convex MPC at each time step by constructing linear safety
constraints from unsafe sets, enabling safety from the first
execution with no prior data or trial runs needed. While
classical constrained MPC [52] addresses linear dynamics
with polyhedral constraints, our formulation embeds high-
order CBF constraints, a learned boundary detector, and
bounded slack variables, enabling safety constraint enforce-
ment for iteratively linearized systems and unsafe sets. If
the boundaries of the unsafe sets are simple and known, we
directly linearize them; if complex and unknown, a Deep
Neural Network (DNN), referred to as a Safety Boundary
Detector (SBD), predicts local linear approximations, which
are then transformed into linearized, discrete-time CBFs to
ensure safety.

B. RELATED WORK

1) Model Predictive Control (MPC): This paper can be seen
in the context of MPC with safety constraints. MPC is widely
used in control systems, such as controller design in robotic
manipulation and locomotion [5], [6], to obtain a control
strategy as a solution to an optimization problem. Stability
was achieved in [7] by incorporating Discrete-time Control
Lyapunov Functions (DCLFs) into a general MPC-based
optimization problem to realize real-time control on a robotic
system with limited computational resources. The authors of
[8] emphasize safety in robot design and deployment. When
safety means obstacle avoidance, some works achieve it
through the introduction of repelling functions [1], [9], while
others regard obstacle avoidance as one concrete example of
safety criteria for robots [10]-[12]. In these works, safety is
formulated as constraints in optimization problems.

2) Control Barrier Functions (CBFs): CBFs are used to
enforce safety, i.e., rendering a set forward invariant for a
dynamical system. Recent studies have demonstrated that to
ensure the stabilization of an affine control system, while
also adhering to safety constraints and control limitations,
CBFs can be integrated with Control Lyapunov Functions
(CLFs). This integration facilitates the creation of a sequence
of single-step optimization programs [1], [2], [13], [14].
If the cost is quadratic, the optimizations are quadratic
programs (QP), and the solutions can be deployed in real
time [1], [15]. For safety constraints expressed using func-
tions with high relative degree with respect to the dynam-
ics of the system, exponential CBFs [16] and high-order
CBFs (HOCBFs) [17]-[19] were proposed. Adaptive, ro-
bust, stochastic and feasibility-guaranteed versions of safety-
critical control with CBFs were introduced in [20]-[25].
Discrete-time CBFs (DCBFs) were introduced in [26] as
a means to enable safety-critical control for discrete-time
systems. They were used in a nonlinear MPC (NMPC)

framework to create NMPC-DCBF [3], wherein the DCBF
constraint was enforced through a predictive horizon. Gener-
alized discrete-time CBFs (GCBFs) and discrete-time high-
order CBFs (DHOCBFs) were proposed in [27] and [28]
respectively, where the DCBF constraint only acted on the
first time-step, i.e., a single-step constraint. MPC with DCBF
has been used in various fields, such as autonomous driving
[29] and legged robotics [30]. To improve the optimiza-
tion feasibility, a decay-rate relaxing technique [31] was
introduced for NMPC with DCBF [32] for every time-
step to simultaneously boost safety and feasibility. However,
the overall optimization remains nonlinear and non-convex,
resulting in slow processing times for systems with large
horizons and nonlinear dynamics (see [32], which is limited
to relative-degree one). In this paper, we extend the relax-
ation techniques introduced in [32] to accommodate high
relative-degree CBFs, and largely improve the computational
time compared to all existing work.

3) Learning-Based CBFs: Many CBF-based methods re-
quire explicit equations for the boundaries of the safety sets.
When these are not available, they can be learned. In [33],
the authors utilized a Support Vector Machine (SVM) to
parameterize a CBF. They employed a supervised learning
approach to classify regions of the state-space as either
safe or unsafe. In [34], the authors proposed a method that
incrementally learns a linear CBF by grouping expert demon-
strations into linear subspaces and creating low-dimensional
representations through fitting. The authors of [35] proposed
to construct polynomial CBFs to represent complex obstacles
or unreachable regions using logistic regression. However,
the above works do not provide theoretical guarantees of
correctness of the learned CBFs. The work in [36] proposed
and analyzed an optimization-based method for learning a
CBF that provides provable safety guarantees given some
mild assumptions. Nevertheless, it still requires that the
equation of the boundary of the safe set is known. Recently,
the authors of [37] defined a learning-based discriminating
hyperplane trained on trajectory data from a black-box
system to eliminate the dependence on any specific equations
for the safe sets. However, the trained hyperplane can only
work for that system. We use a DNN to predict the nearest
boundary point; the outward normal is then computed from
this point, defining a local linear (tangent) boundary of
the safe set that we embed as a DHOCBE. The run-time
constraint is linear, but mapping raw geometry to the nearest
point is nonlinear, which motivates using a DNN.

4) Beyond CBF-Based Methods: Many works tackle com-
plex or unknown obstacles—reachability-based safety filters
[47], planning on reconstructed or occupancy maps [48], and
certified MPC [49]. They typically scale poorly beyond low
dimensions or fixed maps, lack per-step safety certificates
under the true dynamics and input bounds, or require costly
recomputation or large polyhedral encodings. Although safe
reinforcement learning [53], temporal logic based planning
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[54], and multi-agent safety methods [55] have consid-
ered high-dimensional problems, these approaches generally
rely on set-based abstractions or task-level specifications
rather than explicit handling of arbitrary and irregular ob-
stacle geometries. Hence, they are not directly applicable
to environments with complex-shaped obstacles. In con-
trast, we achieve fast, convex per-step safety constraints via
DHOCBFs in convex MPC with learned linear boundaries
from complex-shaped obstacles—without global discretiza-
tion of the environment.

C. CONTRIBUTIONS

This paper introduces a novel approach to safety-critical
MPC that is significantly faster than existing approaches
and enhances safety within complex environments where
unsafe set boundaries are irregular and poorly defined. The
core of our methodology is a learning-based technique for
predicting and linearizing the boundaries of unsafe sets. The
key contributions of our work are as follows:

e A control strategy that ensures safety by enforcing
constraints derived from linearized DHOCBFs. We re-
lax these constraints using bounded slack variables to
improve feasibility while preserving safety. (Sec. IV-C)

e A model predictive control framework that integrates
linearized system dynamics and DHOCBFs as con-
straints within a convex optimization problem. This
problem is solved iteratively, achieving fast computa-
tion speeds ideal for real-time applications. (Sec. IV)

e A machine learning-based method to accurately predict
the linearized boundaries of unsafe sets. The comple-
ment of these boundaries defines linearized approxi-
mations of safe sets, which are then incorporated into
DHOCBF constraints. This is particularly effective in
scenarios where unsafe set boundaries are complex,
irregular, or otherwise difficult to model with analytical
equations (e.g., unknown boundaries). (Sec. IV-C-2)

This work significantly extends our previous conference
paper [38], where we first introduced the idea of linearizing
DHOCBFs under the assumption of known and simple
unsafe set boundaries (e.g., circles). In this manuscript,
we go beyond that by developing a general framework
to learn linearized approximations of complex, unknown
boundaries and integrating this framework into a convex
finite-time optimal control scheme. Specifically, the learned
linearized boundaries are embedded as DHOCBFs to ensure
safety requirements. Furthermore, we provide the details
of the technique based on slack variables within linearized
DHOCBFs for improving both feasibility and safety — these
details were omitted in [38]. Compared with [38], which
considered only a unicycle model, this work additionally
includes a higher-dimensional vehicle model to examine
the scalability of the proposed framework, and validates it
in simulations where both robots navigate narrow passages
with convex and nonconvex obstacles, achieving markedly
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TABLE 1: List of acronyms.

Acronyms Meaning
CBF Control Barrier Function
DCBF Discrete-Time Control Barrier Function
DHOCBF | Discrete-Time High-Order Control Barrier Function
MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control
iMPC Iterative Model Predictive Control
DNN Deep Neural Network
SBD Safety Boundary Detector
CFTOC Convex Finite-Time Optimal Control
MSE Mean Squared Error

better performance in computational efficiency, safety, and
feasibility than existing methods.

Il. PRELIMINARIES

In this work, safety is defined as forward invariance of a set
C, i.e., a system is said to be safe if it stays in C for all
times, given that it is initialized in C. We consider the set C
as the superlevel set of a function i : R” — R:

C:={xeR":h(x) >0} (1)
We consider a discrete-time control system in the form
Xe1 = f(xe, we), 2

where x; € X C R” represents the state of the system at
time step t € N,u, € U C R? is the control input, and the
function f : R™ x R? — R" is locally Lipschitz.

Definition 1 (Relative degree [39]). The output y; = h(x;)
of system (2) is said to have relative degree m if

Yt+i = h(fi—l(f(xtaut)))a (S {1’ 2,... ’m}v
6yt+ 8yt+- . €))
s.t. 8utm #0,, 6utl =04 i€{1,2,...,m—1},
i.e., m is the number of steps (delay) in the output y; in
order for any component of the control input u; to explicitly

appear (04 is the zero vector of dimension q).

In the above definition, we use f(x) to denote the uncon-
trolled state dynamics f(x,0). The subscript ¢ of function
f(-) denotes the i-times recursive compositions of f(-), i.e.,
fix) = F(f(.., f(fo(x)))) with fo(x) = x. Note that
S
in discrete tLirtilnéeSthe relative degree m only means that the
control input influences the safety function after m steps;
this look-ahead is not the same as a physical actuator delay.

We assume that h(x) has relative degree m with respect to
system (2) based on Def. 1. Starting with 1o (x¢) == h(x:),
we define a sequence of discrete-time functions ; : R™" —
R,i=1,...,m as:

Pi(xe) = A1 (%) + i (Pim1(xe)), 4)

where Av;_1(x¢) == ¥—1(Xe41) — Vi—1(x¢), and «;(+) de-
notes the i*" class « function which satisfies ov; (v; _1(x;)) <
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Yi—1(x¢) fori =1,...,m. A sequence of sets C; is defined
based on (4) as

Cii={xeR":¢h;(x) >0}, i €{0,...,m—1}. (5)

Imposing v;(x;) > 0 at time ¢ enforces safety ¢ steps ahead,

since Eq. (4) sequentially ties 1; to X, ..., X¢t-

Definition 2 (DHOCBF [28]). Let ©;(x), i € {1,...,m}
be defined by (4) and C;, i € {0,...,m — 1} be defined by
(5). A function h : R™ — R is a Discrete-time High-Order
Control Barrier Function (DHOCBF) with relative degree
m for system (2) if there exist 1, (x) and C; such that

U(x¢) >0, Vo, €CoN - NCmo1,t EN.  (6)

Theorem 1 (Safety Guarantee [28]). Given a DHOCBF
h(x) from Def. 2 with corresponding sets Cop,...,Cm—1
defined by (5), if xo € Co N --- N Cpy—1, then any Lipschitz
controller w; that satisfies the constraint in (6), Vt > 0
renders Co N -+ - N Cpy—1 forward invariant for system (2),
t.e,Xe €ECoN---NCp_q,Vt > 0.

Remark 1. The function ;(x) in (4) is called an i'"
order Discrete-time CBF (DCBF). If the constraints in an
optimal control problem include only DCBF constraints
(i (x¢) > 0), we must formulate the DCBF constraints up to
the m*™ order to ensure that the control input v, is explicitly
represented based on Def. 1. However, if the constraints
also include the system constraint (2), where the control
input W, is already explicitly represented, we can flexibly
select a suitable order for the DCBF constraints to minimize
computational demands. In other words, the highest order for
DCBF could be mgy with meyr < m. We can simply define
an i" order DCBF 1;(x) in (4) as

Yi(xe) = A1 (xe) + vitio1(xe),

where ) is linear and 0 < v; < 1,3 € {1,..., may}.

(N

The expression presented in (7) adheres to the structure of
the first-order DCBF introduced in [26] and can be applied to
define a DHOCBF with any relative degree for the classical
constrained, safety-critical optimal control problem:

t+1
J(us,x;) = minu! uy + Z(Xk —x)T(xx —x.) (8a)
ug
k=t
s.t. Xt+1 = f(Xt, ut), (8b)
Yic1(Xe41) = (L= vi)hiz1(xe), 0 <y <1,
(80
(8d)

where (8a) defines the objective function of the optimization
problem, x. denotes a reference state, 0 <t <7,¢t € N and
the function ;1,7 € {1,..., me} in (8c) ensures that the
state x;, of system (8b) stays within a safe set C according to
(1). The constraint (8d) bounds the control input and state,
which may conflict with constraints (8b) and (8c), leading to
infeasibility. Note that solving the problem described above
can only yield the current optimal control input, resulting in

uwcUCRY x, € X CRY,

a greedy control policy that considers short-term (one-step)
safety and may overlook safer solutions. As discussed in [3],
there exists a fundamental trade-off between safety and feasi-
bility in control design, and enhancing both simultaneously is
challenging. In [3], the authors show that MPC with DCBFs
can give a safer control policy, as it takes future state and
control information into account. A version of nonlinear
MPC that incorporates DCBFs (called NMPC-DCBF) with a
relaxation technique that simultaneously enhances feasibility
and safety was developed in [32]. This approach, although
it can flexibly incorporate the system’s physical constraints
and safety requirements as soft or hard constraints into the
control strategy, often leads to non-convex optimizations,
resulting in inherently high computational complexity. In
this paper, we show how to linearize the system and DCBF
constraints to obtain a convex finite-time optimal control
(CFTOC) framework within an MPC setting, which signifi-
cantly improves computational efficiency.

lll. PROBLEM FORMULATION AND APPROACH
Our objective is to find a closed-loop control strategy for
system (2) over a time interval [0,7] that minimizes the
deviation from a reference state and satisfies safety require-
ments and constraints on states and control inputs.

Safety Requirement: System (2) should always satisfy a
safety requirement of the form:

h(x:) >0, x, eR", 0<t<T,

where h : R" — R.
Control and State Limitation Requirements: The con-
troller u; and state x; must satisfy (8d) for 0 < ¢ < T.
Objective: We consider the following cost:

€))

N-1 N
J (e, X ) = Z ufug g+ Z(Xt,k — )" (%o — Xe),
k=0 k=0

(10)

over a receding horizon N < T, where x; 1, us j are the state
and input predictions (according to the system’s dynamics)
at time ¢t + k made at the current time ¢, 0 < ¢t < T.
We denote x;9 = X4, uzo = u; and the reference state
as X.. A control policy is feasible if all the constraints
guaranteeing the aforementioned requirements are mutually
non-conflicting for all 0 < ¢ < T In this paper, we consider
the following problem:

Problem 1. Find a feasible control policy for system (2)
such that the safety requirement, control and state limitations
are satisfied, and the cost (10) is minimized. The safety
requirement is defined with respect to unsafe sets whose
boundaries may be either explicitly known (e.g., analytic
functions) or unknown and only available through samples.

To satisfy the safety requirement, the authors of [32]
incorporated the DCBF constraint

h(x¢p41) = we (1 = y)h(xer), 0<y <1 (11
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into MPC with a relaxation variable w; ;, € R, which simulta-
neously enhances feasibility and safety. They also formulated
(2) and (8d) as constraints in the MPC to meet additional
requirements, which results in the entire optimization prob-
lem being nonconvex, as (11) and (2) are often nonlinear.
This method, referred to as NMPC-DCBEF, can lead to slow
processing times for systems with large horizons. Another
issue is that, when the boundary of the unsafe set is difficult
to express with explicit equations, it becomes challenging to
obtain a DCBF candidate h(x). Some approaches [3], [40]
exist for the case when the boundaries of the unsafe sets
are circular or polytopic. In many real-world situations, this
assumption is restrictive. Meanwhile, using a conservative
known surrogate (e.g., polygon or circle) to replace the
ground-truth obstacle set yields a smaller safe set (see e.g.,
[40], where the authors used NMPC to ensure safe path
following for a unicycle robot). However, due to the presence
of numerous polytopic obstacles in the map, defining the safe
region using linear equations corresponding to the edges of
the polytopes results in a very small safe region. This limited
the NMPC to handling only nearby obstacles, making distant
ones difficult to address.

Approach: In all tested scenarios, the proposed iMPC-
DHOCBF achieved a remarkable online computation
speedup of tens to hundreds of times over the NMPC
baseline, while consistently preserving safety and maintain-
ing high feasibility rates under tight input bounds. These
results highlight that our approach not only accelerates online
optimization but also ensures consistent safety performance.
The key to these gains lies in transforming the original
nonconvex safety constraints into efficiently solvable convex
forms via a Safety Boundary Detector (SBD). This SBD
obtains linearized unsafe set boundaries either directly, when
they are simple and known, or via a trained deep neural net-
work, when they are complex or unknown. Each linearized
boundary equation serves as a DHOCBF candidate h(x) for
constructing its corresponding constraint. Since each unsafe
set corresponds to a single DHOCBF constraint—unlike in
[40], where multiple DCBF constraints are used per unsafe
set—the resulting safe set, defined as the intersection of
all DHOCBF constraints, achieves broader coverage with
fewer constraints. We integrate these constraints into an MPC
framework that also incorporates state and input bounds,
relaxing each DHOCBF constraint with a bounded slack
variable to improve feasibility while still guaranteeing safety.
The system dynamics constraint is additionally linearized,
yielding a fast-computing convex optimization problem de-
signed to be solved iteratively, with decision variable errors
reduced after a certain number of iterations.

IV. ITERATIVE CONVEX MPC WITH DHOCBF

In this section, we present an iterative convex MPC for
general DHOCBFs defined in Sec. II.

VOLUME 00 2021

A. ITERATIVE CONVEX MPC

Our proposed approach, which is depicted in Fig. 1, in-
volves iterative optimizations at each time step ¢, which is
denoted as iterative MPC-DHOCBF (iMPC-DHOCBF). Our
iterative optimization problem contains three parts for each
iteration j: (1) solving a CFTOC problem with linearized
dynamics and DHOCBEF to get optimal values of states and
inputs X}/ = [x;7,... X%, U = g, ... a7k ],
2) checkmg convergence, (3) updatmg the state and input
vectors for next iteration, i.e., XJ ' = X7 Ut = U,
Notice that the open-loop trajectory w1th ‘updated states
X; = [X{s---»X{ ny_) and inputs U7 = [u],..., 0] y_]
is passed between iterations, which allows iterative lineariza-
tion for both system dynamics and DHOCBF locally.

The iteration is finished when the convergence error
function e(X}7, U’ X7 U7) is within a user-defined nor-
malized convergence criterion. To restrict the number of iter-
ations, we limit j < jmax, Where jmax denotes the maximum
numbers of iterations. Therefore, the iterative optimization
process halts upon reaching a local minimum for the cost
function, meeting the convergence criterion, or when the
iteration count equals jmax. The optimized states X; and
inputs Uy from the last iteration are passed to the iMPC-
DHOCBEF for the next time instant as U, ;, X9, ;. At each
time step, we record the updated states x;,; propagated
by the system dynamics x;11 = f(x¢,u;,), enabling us
to extract a closed-loop trajectory. Note that if we have the
boundaries of unsafe sets, the SBD can directly linearize safe
boundaries by finding the point nearest to the robot’s current
location and drawing a tangent surface at that point. If we do
not have the boundaries of unsafe sets, SBD relies on a DNN
that is trained before the start of the iMPC. The advantage of
this approach is that we have pre-trained a DNN which can
learn in advance information about all unsafe sets in the en-
vironment, especially when the boundaries of the unsafe sets
cannot be accurately identified and described. Consequently,
the time required to perform inference with this DNN for
obtaining the linearized DHOCBEF is essentially fixed in each
iteration and can gradually decrease as adjustments are made
to the DNN, ensuring the efficiency of solving each CFTOC.

B. LINEARIZATION OF DYNAMICS

At iteration j, a control vector ut & 18 obtained by linearizing
the system around xt > ut K

xt,k+1_it,k+1:At7k(Xt,k_it,k) + Bg,k(

where ¢, = = f(x Xp oW )—iikﬂ, 0 < J < Jma K
and j represent open- loop time step and iteration indices,
respectively. We also have

Al = Dyf(%],ul,), Bl =Duf(x],,0l,), (13)

where Dy and D, denote the Jacobian of the system
dynamics f(x,u) with respect to the state x and the input u.
This approach allows us to linearize the system at (X ,, @} )
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. PN
Xi41 = J'(XI-“:.())—'f :

FIGURE 1: Schematic of the iterative process for solving convex MPC at time ¢. The safety boundary detector (SBD) generates
linearized boundaries, which are converted into DHOCBF constraints. At each iteration, a convex finite-time optimal control (CFTOC)
problem with linearized dynamics and quadratic cost is solved. The problem remains convex due to linear constraints and a positive
semidefinite weight matrix. A convergence check determines whether to iterate or update the state x; .

locally between iterations. The convex system dynamics
constraints are provided in (12) since all the nominal vectors
(x] ,,u],) at the current iteration are constant and con-
structed from the previous iteration j — 1.

Remark 2 (Warm Start). We linearize the safe set constraint
by projecting the nominal prediction to the nearest boundary
and enforcing the outward-normal half-space, which yields
an approximation of the safe set. This approximation holds
only if the nominal N -step rollout remains outside obstacles.
In this case, we use a cheap safe warm start: for t > 0 we
shift the previous optimal input sequence and pad the tail;
for t = 0 we select from sampled admissible inputs whose
nominal rollout (X ) remains outside obstacles over the N -
step horizon. This improves feasibility, while the DHOCBF
constraints enforce closed-loop safety at each step.

C. LINEARIZED SBD-GENERATED DCBF AND DHOCBF

1) Safety Boundary Detector for Known Unsafe Boundaries:
In this section, we show how to linearize the DCBF up to
the highest order with known unsafe boundary h(x) = 0.
At iteration j and time step ¢ + k, as shown in Fig. 2,
in order to linearize h(xj,), an explicit dashed line is
projected in the state space to the nearest point S'ci  on the
boundary of the unsafe set from each state )‘(ik Note that

5{{7 i is the nominal state vector from iteration j — 1 for the
linearization at iteration j, which means 5({) B = x{j{l. The
hyperplane (solid line in the 2D illustration) perpendicular
to the dashed line and passing through the nearest point fci &
is denoted as h(x] X 7). This allows us to incorporate
the above process into the SBD to define a linearized safe
set by hy(x] L tk) > 0, Vt € N by the green region.
Note that Xt,k generally represents the optimized value of
the minimum distance problem with distance function A(-)
between X;, and safe set C. Since h(-) is known and
continuous, for common shapes of unsafe sets, the expression
of X], as a function of xt & 18 explicit. For example, when
h(-) descrlbes a ly-norm function with the unsafe set being

vi

hix] ;) = 0}

C={xj,:

Obstacle ;
R"\ C = {x}, : h(x] ;) < 0}

FIGURE 2: Linearization of DHOCBF: i (x] % ) > 0 repre-
sents the linearized safe set locally and is colored in green. Note
that h“(xt K tk) > 0 guarantees h(xt x) = 0 (colored in blue
plus green), which ensures collision av0|dance (outside the grey
region).

a circular shape, fci i is exactly the intersection point of the
line determined by )’cg’ i and the center of the circular region
with the circumference. The relative degree of hy(x] ;%] ;)
with respect to system (2) is still m when the relative
degree of h(x],) is m. Thus, in order to guarantee safety
with forward invariance based on Thm. 1 and Rem. 1, two
sufficient conditions need to be satisfied: (1) the sequence of
linearized DHOCBEF ¢ (-), ..., ¥m.,—1(-) is larger or equal
to zero at the initial condition x;, and (2) the highest-order
DCBF constraint ¢, (x) > 0 is always satisfied, where
¥i(+) is defined as:

1/;0(3({,1@) =h) (x tlk7 ik)

T ) T N (e AP
wz(xt,k)' wz—l(xt’]pd) wz—l(xt,k)_kfnwz—l(xt,k)'

Here, we have 0 < v; < 1,4 € {1,..., mer}, and mepr < m
(as in (7)). From Rem. 1, it follows that that mgy is not
necessarily equal to m. A detailed discussion on this can be
found in [27], [32].

An important issue is feasibility. It is possible that
Pi(x,) > 0,1 < i < mee— 1, with k € {0,...,N}
is not satisifed since the linearized DHOCBF functions
Yo(-), - -+, Pmyy—1(+) are more conservative than the original
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forms o(-), ..., ®Wmgy—1(). This problem can occur when
the horizon is too large, or the linearization is too conser-
vative. In order to handle this issue, we introduce a slack
variable wi x.; With a corresponding decay rate (1 =)

lzi—l(XikH) > wik,i(l - ’Yz‘)?/;z'—l(xi,k), wik,i >0, (15)

where i € {1,...,me¢}. The slack variable wi,“ is se-
lected by minimizing a cost function term to satisfy DCBF
constraints at initial condition at any time step [32].

Another challenge stemming from the linearization of the
DCBF is that the constraints in (15) might become non-
convex, e.g., if ¢ = k = 1, equation (15) becomes a
nonconvex inequality:

Po(xy ) = wiy 1 (1= 71)vo(xiy), wt 1120,
where both wt 1,1 and xt |, are optimization variables. It is
important to note that Yo (xt 0) is always constant; therefore,
we can position wt k1 in front of 1/)0(Xto) and relocate

the other optlmlzatlon variables to the opposite side of the
inequalities as

wo(xi,Q) 2 Wi,m(l - ’71)21/}0(3({,0% W§,1,1 =0, a7
which is linear and convex. This motivates the convex
formulation (18), which replaces (15) with convex con-
straints. The following constraints of 1/31(x§ r41) are stacked
by order i and, within each order, by prediction step k:
first all t=0 constraints for £ = 0,...,k—1, then =1 for

(16)

k=0,...,k—1, and so on up to i=mps.
1/’0( 1) 2 Wt ,0, 11— 71)1/10(Xi70), W?,o,l 20,
Yo(x i ) > Wt,1,1(1 _71)2¢0(X§,0)a wg,l,l 20,

do(x] ) > wi 1 (1= m) o(xlg), wi, 1, >0,
1/;1(?({,1) + (72 — 1)1/30()({71) Z"Jg,o,z(l —72)(m —1)
- , (71— 1+ 72 — D)ho(x] ;)
J J < = ——

| Yolxio): wt’.O’Q B (1 —2)(m — D)tbo(x1 )

V1(x] ) + (2 = Do (x] 5) >l 1 2(72 — 1)(1 = m1)?

o , (11 — 1472 — D)ho(x],)

J J < = >
R s S ()

s

9

Mecbf

lzmcbffl(xltj,k) + Z(’ymcbf - 1)ZV,mcbf(1 - 71)k_11/;0(x‘z,u)
v=1

— 1) o (x] ),
(18)

2 wg,k,mcbf(l - ymcbf)Zoymcbf(l

j .
where Wi ke 2y mess £0,mey €an be found in (20), (21).
The above constralnts can be summarized as

1;[}7 1th +Z

- %)Zo,z‘(l - ’Yl)k_%o(xg,o),

Zy (1 —p)F!
) o(xq,) > (19)

wt,k,i(

VOLUME 00 2021

where
§<jmax €NT, i€ {l,...,mar}, 1<k N, wf
i—2
Wg,k,i(l —7i)Zo,i(1 — w)k*%o(x{,o) > Z Zy,i(1— )Pt
v=0

207

k,1

(20)

xt vl +Z i — 1) Zy 4 ( (1—~y)k™ 17,[10(xty) if i > 2.

Zy,i is a constant that can be obtained recursively by
reformulating ;1 () back to 1o(-) given v € {0, ..,i}. We
define Z,, ; as follows. When 2 < {,v <7 — 2, we have

lmﬂ)&
Zyi = Z[(’YQ - 1)(7C2 - 1) T (’7@‘7"71 - 1)]l7
= 20
G << <(—p_1,( € {1,2,...,i— 1},
where lmax = (Z_Z;il)v Cs denotes CvaZa"'vCifl/fL []l

denotes the I*"* combination of the product of the elements

in parenthesis, e.g., if i = 4,v =1,Z14 = (11 — 1)(72 —
D+ (=13 —1) 4+ (y2 — 1)(y3 — 1). For the case
v =1i—1, we define Z, ; = 1. Besides that, we define 7, ; =
0 for the case v = ¢ ((17) shows the case where Zp; =
1, Z; ;1 = 0). With the linearized DHOCBF in place, we now
connect the construction to closed-loop safety. Assuming that
at each step there exists a control input satisfying (19) under
(20), the theorem below establishes forward invariance of
the (linearized) safe set.

Theorem 2. Given a linearized DHOCBF h|(x) for system
(2) with corresponding functions 1o(x), 1 (x) . . . 71/~)m,bf(x)
defined by (14), if éo(xo) > 0, then any Lipschitz controller
u; that satisfies the constraints in (19) given conditions in
(20), ¥Vt > 0 renders Cy = {x € R™ : 1y(x) > 0} forward
invariant for system (2), i.e.,X; € CO,W > 0.

Proof:
By rewriting (14), if ¢ > 2,k > 1, we obtain
i+1
Gix)) =Y Zuia(L— )" o(xl,).  (22)
v=0
Then, we have
J%(XZIC) = @fl(XZ,kH) + (v — 1)1/31‘71()(;1@) >0

— > Zui(1 =) o(x] 1)+

v=0
i ~ .
> (i = 1)Zyi(1 =) Mo(xd,) >0
v=0
o i—2
= Zi—1i(1—7)* o(xd ;) + Z Zyi(1—=m)* !
v=0

1/1 17’)’1)]C le( )Z

Xt w41 +Z

(1 —7i)Zo,i(1 — 71)k_11;0(xz,0)~
(23)

vii
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Since ﬁo(x{’o) is a constant, we position the slack variable
w} ., in front of it and equation (23) becomes

Zi—1:(1— ’Yl)kflizo(xi,i) > Wg,k,i(l =) Z0,i(1 — )" ?
i2

Q/JO(Xi,O) - Z Zyi(1— 71)k717/’0(xi,u+1)*
v=0

> (1 = D Zui(1 = m)F Mo (x] )

v=1

(24)

Note that ’(/Jo( Xy it h— 1) (1—’yl>k 11ﬁ0( ) Ifi =1, we

need to ensure

’JJO(Xg,k) 2 wi,k—l,l(l - VI)kl/NJO(X'Z,o)

Equations (24), (25) are also equivalent to (19). Since
Zi—1; =1, in order to make wo(xgﬂ-) > 0, we need

(25)

i—2
(1 =720 (1= 7) " o(xly) =Y Zoi(1—m)*"
v=0
XtVJrl +Z . Vzl_'Yl)k 11/}0( )1f222,
W 2 0ifi=1,
(26)

which is the same as (20). This means that by satisfying
constraints in (19), given the conditions in (20), V¢ > 0, we
have wo(x“) >0,7 < jmux €NV, i€ {1,...,mer}, Vi >
0, thus wo(xt) > 0 is guaranteed. ]

Remark 3. Note that if we position wt ki in front of
Zy=1(% D) Z,i(1—~)*~ 1¢0(xt L) in (19), equation (15)
is the same as (19). This illustrates that the decay rate in (19)
used by the iMPC-DHOCBEF is partially relaxed compared
to the one in (15) due to the requirement of the linearization.
This can affect the feasibility of the optimization. Allowing
w;m € R (unbounded) can further enlarge feasibility, but it
does not enforce 150( ) > 0 and thus may violate safety. By
constraining wt ki Via (20), we guarantee 1/)0( ) > 0 (safety)
while still enlargmg feasibility relative to the no-slack case;
hence we adopt (20). Note, however, that a bounded slack
only improves per-step feasibility and does not ensure recur-
sive feasibility: without a control-invariant terminal set/tube,
feasibility at time t does not imply feasibility at t+1, since
under bounded inputs and a finite horizon the next-step
linearized constraints may conflict with the dynamics/bounds
or demand a slack beyond its admissible range.

2) Safety Boundary Detector for Unknown Unsafe Bound-
aries: Notice that xt i in Sec. IV-C-1 could be implicit
if h(-) is unknown or discontinuous, or for unsafe sets of
irregular shapes (like general ellipse), but it could still be
numerically approximated as the values of X; , known at
iteration j before the linearization, i.e., if we could predict

viii

the nearest point ii i for the it" unsafe set. For a map, the
linearized boundary of the unsafe set can be expressed as
J

hn(X‘Z,wii,k) = (igk - )_(t,k)T(Xg,k - igk)> (27)

which can also be used as a linearized DHOCBF in Sec. IV-
C-1. Specifically, it involves finding the nearest point on the
boundary of an unsafe set or an inaccessible region relative
to the current position, and then constructing a tangent line
or plane through that point to serve as the linearized unsafe
boundary. Next we will show how to design a Deep Neural
Network (DNN) to get the approximate nearest point 5(% -

The designed DNN learns a specific map to identify and
return the nearest point on each unsafe set relative to the
system. A line perpendicular to the vector connecting the
robot’s current location and this point defines the linearized
boundary. During training, nearest points are collected as
ground truth for every safe point, enabling the DNN to learn
via supervised learning. To efficiently store this information,
we focus on architectures with strong associative memory,
as conventional DNNs excel at pattern recognition but lack
memory capacity. Models such as Hopfield Networks, Neural
Turing Machines, Autoencoders [41], and Transformers are
well-suited for this task.

Model Selection: We adopt an Autoencoder framework
for its ability to encode complex patterns, but use only the
encoder to streamline the model and accelerate inference.
Instead of reconstructing inputs, our focus is on efficient
nearest-point retrieval. During training, the encoder com-
presses the map into a low-dimensional space by minimizing
the loss between predicted and ground-truth nearest points.
Once trained, it acts as a memory register, recalling nearest
points efficiently. Omitting the decoder reduces computa-
tional overhead, and the encoder delivers consistent inference
times regardless of map complexity (e.g., the number of
unsafe sets).

Map Processing: We begin by identifying the boundaries
of unsafe sets on a pixel-based canvas that simulates convex
and non-convex shapes. Using image processing, we de-
tect boundary pixels without requiring precise mathematical
descriptions. To improve efficiency, we select a subset of
boundary pixels 00X} .. to form discrete contours repre-
senting 4" h unsafe set (; < p). This method generalizes well
across different maps and shapes. The processed boundaries
are shown in Fig. 3, where X = [7,7]” denotes the sys-
tem’s current position, and [z, 1, ..., Zp, Y]’ Tepresent the
nearest boundary points x1, . .., X,, computed via pixel-wise
comparison:

(X) := arg min IIx—zll, (28

2;

=I5y
aXuma(e
unsafe

where z; is a point on the boundary of the i unsafe set,
and x; = Iy (X) denotes the nearest boundary point to
X. Both x andllnﬁc\: are shown as red dots.

Network Design and Training: As described above,
we use the encoder of an Autoencoder neural network.

Figure 3 shows its structure, where the number of nodes
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decreases layer by layer to extract essential map informa-
tion. Each layer is fully connected to ensure comprehensive
processing. The network takes the system’s current location
[z,7]" as input and outputs predicted nearest points
[#1,71,---,Zp,Up)? on nearby unsafe sets. Since the number
of unsafe sets varies across maps, the output size may
change, requiring network re-training for adaptation. The
first hidden layer is denoted as hg. The subsequent layers’
dimensions are defined by:

h; = hg — i % floor((ho — lout)/L), 29

in which h; stands for the number of nodes in the it of
hidden layers, l,,; is the output layer size, and L denotes
the total number of hidden layers. The floor function rounds
down a real number to the nearest integer less than or equal
to that number. This model architecture, which uniformly
reduces layer by layer, can adaptively adjust to the size of
the output and ensure smoothness in dimension reduction.

We train a neural network fp(X) with parameters 6 to
approximate the nearest points by minimizing the mean
squared error loss:

: 1 - Strain
£(0) = min > o=
i=1

X:

train ” 2

(30)

wain are sampled across the

where the system locations X
map and their nearest boundary points xn . .,xgai“ are
identified by (28) as ground truth. If multlple nearest points
exist (e.g., with nonconvex boundaries), one is selected arbi-
trarily. More generally, the learning objective can be viewed
as minimizing the expected loss over the data distribution

D:

£(6) = min Egemnp [|| (R TT, 4

unsafe

(Xtrain) H2:|

(3D
To quantify generalization, we evaluate the performance of
the trained model on unseen test data using:

MSE o = Z | fo (%)

] 1

t_estH 2
j .

(32

Note that training samples X"®" include system locations

both inside and outside the unsafe sets, which improves
the network’s generalization. In contrast, testing samples
x't contain only locations outside the unsafe sets, to
evaluate prediction accuracy. Since the network’s output
%x; = 2,57 = fo(X),i € {1,...,p} could be used as the
approximate nearest points, we can incorporate the above
process into the SBD to define linearized safe sets from
(27) by hy(x] ;%] ) > 0, Vt € N similar to Fig. 2. The
linearization of the DHOCBF 7| (x] bk Xy k) up to the highest
order will be the same as shown in Sec. IV-C-1.

Remark 4 (Continuity of h)(-)). Whether the equation of
a linearized safe boundary (27) to a continuous boundary
is continuous with respect to point x; , depends on the
properties and smoothness of the curve. For smooth bound-
aries, such as circles or ellipses, the nearest point 5({ p fo
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FIGURE 3: System identification for the Safety Boundary Detector
(SBD), a DNN fy(x) trained on map data. Given the robot’s
location (z, 3), the SBD outputs the nearest point (Z;, §;) on each
of the p unsafe set boundaries, one per set.

an external point X{‘k can typically be calculated, and this

point changes continuously as xg’k moves. In these cases,
(27) is usually continuous as well. However, for shapes with
sharp corners or discontinuities, like stars, the location of
the nearest point may jump abruptly with minor movements
of X; . (Jumping from one vertex to another or from an edge
to a vertex), leading to discontinuities in (27) at these points.
The pixel-based boundary approximation introduced in Sec.
IV-C-2 will also bring discontinuity. Discontinuity affects the
optimality of the obtained controller. However, pixel-based
discontinuity could be ameliorated by increasing the number
of pixels (minimizing the distance between adjacent pixels).

Remark 5 (Motivation for Using Neural Networks as
Nearest-Point Detectors). While traditional methods such as
Euclidean distance functions (EDF [42]) and spatial tree
structures (e.g., k-d trees [43]) are widely used for nearest-
boundary queries, our motivation for adopting a DNN-based
approach is three-fold. First, it is memory-efficient, avoiding
the need to store dense distance maps or indexing structures,
whose memory usage scales with map size and resolution.
In contrast, the trained DNN serves as a compact function
approximator with fixed memory. Second, when boundary
pixels are sparse, EDF and spatial-tree methods rely on
limited samples, potentially leading to suboptimal nearest-
point queries. Our DNN can interpolate from sparse data
to predict locally optimal points, mitigating discretization
issues. Third, under noisy observations, traditional methods
may fail due to reliance on disturbed pixels, while the DNN
can learn to filter outliers and predict smooth, reliable points
by leveraging spatial patterns in training. Its accuracy can
further improve through model and hyperparameter tuning.

Remark 6 (The Convexity of Unsafe Sets). Let O C R™
be the unsafe set and C = R™\ O the safe set. At the
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current location X, the SBD returns the nearest bound-
ary point x € 00. We form the local linear constraint
H(x) :={x: hy > 0} where h is defined by (27). If O is
convex, the hyperplane at % is supporting and H(x) C C, so
enforcing h) >0 implies the original safety constraint along
the horizon (as shown in Fig. 2). If O is nonconvex, H(X)
is a local approximation of C near the boundary component
containing X. In either case, the closed-loop safety can
be strengthened by re-linearizing at every iMPC iteration,
using a small discretization step At to limit inter-step drift,
and (optionally) intersecting a few tangents, ﬂfn:l HM (%),
i.e., having the SBD return the | nearest boundary points
itj ’k(m) to X for each obstacle and forming multiple tangents
to obtain a tighter local approximation of C, or adding
a margin hy > ¢ > 0. Because the SBD is agnostic to
convexity and supplies nearest boundary points for arbitrary

shapes, the procedure applies to complex unsafe sets.

Remark 7 (DNN Prediction Errors and Certified Bounds).
Note that our DNN-based Safety Boundary Detector does
not provide a strict a priori bound on the prediction error.
Since our setting involves low-dimensional inputs (e.g., 2D
location states), existing techniques such as Lipschitz-based
certificates [56], neural network verification tools [57], or
robust training with certified bounds [58] could, in principle,
be applied to derive worst-case guarantees. Incorporating
such certified error bounds into our framework will be
pursued as future work, which can further strengthen the
theoretical safety guarantees. At the same time, extending
these verification techniques to high-dimensional sensory
inputs (e.g., images or point clouds) and real-time MPC
remains an open challenge for the broader community.

D. CFTOC PROBLEM

In Secs. IV-B and IV-C, we have demonstrated the lin-
earization of system dynamics and the safety constraints
using DHOCBF. This enables us to incorporate them as
constraints in a convex MPC formulation at each iteration,
which we refer to as Convex Finite-Time Constrained Op-
timization Control (CFTOC). This is solved at iteration j
with optimization variables U] = [u/g,...,uf y ;] and
Q= [wloir - wiyl where i € {1,... mepr}.

CFTOC of iMPC-DHOCBF at iteration j:

N-1
. min P(xi N) + E q(xi k> ui k,wi k 1) (332)
ul,Q) (934 ’ ’ ’ o
20,10 e m e k=0

. J Y AT J g J J o _5J j
SLXy pt1 xt,k+1_At,k(xt,k xt,k)+Bt,k(ut,k ut,k)JrCi,kv

(33b)
wl, €U, xI, X, Wi, st (0), (33¢)
[3
Gia(x] )+ D (v = D Zui(1 =) Mo (x],) >
v=1
wl (=9 Zoa(1 = 1) 1o (x] ). (33d)

In the CFTOC, the linearized dynamics constraints in (12)

and the linearized DHOCBF constraints in (19) are enforced
with constraints (33b) and (33d) at each open-loop time
step k € {0,...,N — 1}. The state and input constraints
are considered in (33c). The slack variables are subject to
constraints in (20) to enhance feasibility while guaranteeing
safety, as discussed in Thm. 2. Note that, for ensuring
the safety guarantee established by the DHOCBE, the
constraints (33d) are enforced with ¢ € {0,...,mews},
where Z,; € R is as defined in (21) with v € {0, ..,i}. The
optimal decision variables of (33) at iteration j is a list of
control input vectors as U; 7 = [u;7,...,u;%_,] and a list
of slack variable vectors as Q7 = [w;d ..., w;_, ,]. For
avoidance of multiple unsafe sets, the DHOCBF constraint
(33d) in the CFTOC framework (33) originally considers
only a single set. To handle p unsafe sets, the slack variable
vectors sz (used in both the cost (33a) and (33d)) and the
constraint itself must be expanded accordingly. The CFTOC
is solved iteratively in the proposed iMPC-DHOCBF
framework, and a solution is extracted once the convergence
criteria or maximum iteration number jn.x iS reached, as
shown in Fig. 1.

E. COMPLEXITY OF iMPC-DHOCBF

1) Size of Map and Network: In Sec. IV-C-2, before we train
the network, we need to gather as many sampled system’s
locations as possible across the map, while also identifying
the nearest points on the boundaries of unsafe sets relative to
the system. This means that the size of the map will influence
the number of sampled locations and ground truth data. The
larger the map, the greater the number of sampled locations
and ground truth needed, which in turn extends the time
required to train the network. Additionally, the more complex
the network structure (such as more hidden layers or more
nodes), the longer it will take to train the network.

2) Number of Unsafe Sets: In (33), every system’s state
Xf . corresponds to a nearest point 5({ . on each unsafe set,
and each nearest point corresponds to a linearized DHOCBF
(33d). Therefore, the more unsafe sets there are, the more
DHOCBEF constraints exist, leading to increased complexity
in the CFTOC. One can choose to only consider unsafe
sets within a certain range based on the current location to
reduce complexity. This means that when the horizon N is
large, the predictive capability of the MPC will be limited.
Nonetheless, the complexity related to unsafe sets in our
algorithm is lower than the state-of-the-art [40], because each
polytopic unsafe set corresponds to multiple DHOCBFs.

3) Horizon Length: In (33), the horizon N results in a
linear increase in the number of all constraints. Compared
to distance constraints, DHOCBF constraints incorporate
additional higher-order sufficient constraints to ensure safety.
As discussed in [40], DHOCBF constraints enable effective
avoidance behavior for unsafe sets with a smaller hori-
zon length. One could consider to require the horizon of
DHOCBF N, smaller than IV to reduce the complexity.

VOLUME 00 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/0JCSYS.2025.3612245

IEEE
~ CSS

n

To ——Closed-loop (£ e B s o
> Open-loop (. > >
Open-loop ( — N =214 =04
1 ——Open-loop ( 1 — N =249 =06
— Open-loop (j — - N=247,=04
——Open-loop (j = 3 - - N=24,7,=06
-2 - -2
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
z(m) x(m) z(m)
(a) iMPC-DHOCBF when (b) iMPC-DHOCBF with (¢) NMPC-DHOCBF with (d) iMPC-DHOCBF and
N =24, 71 = 72 = 0.4. bt = 2. Mept = 2- NMPC-DHOCBF with
Mept = 1.

FIGURE 4: Open-loop and closed-loop trajectories with controllers iMPC-DHOCBF (solid lines) and NMPC-DHOCBF (dashed lines): (a)
several open-loop trajectories at different iterations predicted at ¢ = 6 and one closed-loop trajectory with controller iMPC-DHOCBF;
(b) closed-loop trajectories with controller iMPC-DHOCBF with different choices of V and +; (c) closed-loop trajectories with controller
NMPC-DHOCBEF with different choices of NV and ~. Note that two trajectories stop at ¢t = 13 and ¢ = 33 because of infeasibility; (d)
closed-loop trajectories with controllers iMPC-DHOCBF and NMPC-DHOCBF with m¢y; = 1. Both methods work well for safety-critical
navigation. This figure demonstrates that at a specific time step, iMPC-DHOCBF can iteratively drive the open-loop trajectory to
converge to a local minimum while ensuring the safety of the closed-loop trajectory over ¢gjm,.
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-3 : 0.2 —_—
0 5 10 15 20 0 5 10 15 20
k k

(a) Location (b) Location y

O(rad)

N
——Converged (j = 32)
05 Converging (1 < j < 32)

——Converged (j = 32)
Converging (1 < j < 32)~

0 5 10 15 20 0 5 10 15 20
k k

(c) Orientation 6 (d) Speed v

FIGURE 5: Iterative convergence of all states at converged iteration js conv = 32 With N = 24, m¢ps = 2, 1 = 72 = 0.4. iMPC does help

to optimize the cost function to reach local optimal minimum.

4) Convergence Criterion: In Fig. 1, the number of iterations
at each time step is determined by the convergence criterion
or jmax- One can flexibly choose which variables to include
in the convergence criterion, e.g., state X;*, input U;*’, or
both state and input. Appropriately relaxing the convergence
conditions (such as increasing the allowable error) or reduc-
ing jmax can both decrease the complexity of the algorithm.

5) Highest Order of DHOCBF: In (33), the highest order of
DHOCBF mygs results in a linear increase in the number of
DHOCBF constraints (33d). As discussed in Rem. 1, it is
not necessary to formulate DCBF constraints up to the m!”?
order. In other words, the highest order for DHOCBF could
be mepr With mepr < m. Making meps smaller than m but
larger than one will reduce the complexity of the algorithm
without significantly compromising safety.

6) Complexity Scaling with State and Input Dimensions:

Because each prediction step carries its own copy of the
state vector x; j, € R™ and input vector u; , € R?, enlarging
n or q inflates the stacked decision vector that the CFTOC
must solve. Every extra state or input triggers additional
rows for the linearized dynamics, box constraints, and any
DHOCBF or slack-variable terms. Since the number of
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constraints already scales linearly with the horizon NV, the
overall problem size grows roughly (’)(N (n+q)) in memory.
More states also mean larger Jacobians A{) P Bi . and extra
slack variables—each adding per-iteration linearization and
matrix-assembly cost.

V. CASE STUDIES

We focus on a unicycle robot. Case Study I compares our
method with the baseline NMPC-DHOCBF using a circular
obstacle as the unsafe set. The baseline is extended with a
relaxed DHOCBF based on (11), following [32, Rem. 4].
Case studies II and III demonstrate the proposed iMPC-
DHOCBF on more complex maps. Case study III also
includes results for a vehicle model. Animation videos are
available at https://youtu.be/G9S7y90LRig.

A. CASE STUDY I: POINT ROBOT AVOIDANCE OF A
CIRCULAR OBSTACLE WITH KNOWN BOUNDARY
Since the nearest point on a circle from a point outside the
circle can be expressed by an accurate geometric equation,
SBD is equivalent to finding tangent lines on this equation
using derivatives, so we do not need to train a DNN here.
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1) System Dynamics:
model in the form

Consider a discrete-time unicycle

Tiy1—Tt vy cos(6;) At 0 O

Yt+1—Yt | |Vt sin Qt)At 0 0 U1t

9t+1 —9t o 0 + At 0 U2t ’ (34)
Vi4+1— V¢ 0 0 At

where x; = [z¢, ¢, 0, v¢]T captures the 2-D location, head-
ing angle, and linear speed; u; = [U17t7u27t}T represents
angular velocity (u;) and linear acceleration (us), respec-
tively. The system is discretized with At = 0.1 and the total
number of discretization steps tsy, equals 7' in Problem. 1.
System (34) is subject to the state and input constraints X
and U which can be found in [38].

2) System Configuration: The initial state is [—3,0,0,0]7
and the target state is x,. = [3,0.01,0, 0], which are marked
as blue and red diamonds in Fig. 4. The circular obstacle
is centered at (0,0) with r = 1, which is displayed in
orange. The other reference vectors are u, = [0,0]7 and
wy = [1,1]T. We use the offset y = 0.01m in x, to prevent
singularity of the optimization problem.

3) DHOCBF: As a candidate DHOCBF function (x;),
we choose a quadratic distance function for circular obstacle
avoidance h(x;) = (;—x0)%+(y:—yo)*—r2, where (9, yo)
and r denote the obstacle center location and radius, respec-
tively. The linearized DHOCBF @o(xg ) in (14) follows the
formulation presented in [38]. 7

4) MPC Design: The CFTOC cost penalizes deviations from
reference vectors and includes slack variables to enhance
feasibility while ensuring safety. The details of the MPC
design can be found in [38].

5) Convergence Criteria: The iterative optimization termi-
nates when absolute or relative convergence criteria are met,
as defined in Fig. 1. See [38] for a similar formulation. The
maximum iteration number is set as jn.x = 1000. To ensure a
fair comparison with NMPC-DHOCBEF, the hyperparameters
P,Q, R, S are kept consistent across all configurations.

6) Solver and CPU Specs: For iMPC-DHOCBF, we used
OSQP [44] to solve the convex optimizations at all iterations.
The baseline approach NMPC-DHOCBEF is open-source, and
was solved using IPOPT [45] with the modeling language
Yalmip [46]. We used a Windows desktop with Intel Core
17-8700 (CPU 3.2 GHz) running Matlab.

7) Iterative Convergence: — The iterative convergence is
shown in Figs. 4a and 5. Figure 4a shows the closed-loop
trajectory (the black line) generated by solving the iMPC-
DHOCBF until the converged iteration j; cony from ¢ = 0
to t = t4ym = 100 and open-loop iteratively converging
trajectories (colored lines) at different iterations at t = 6.
Figure 5 presents more details on the iterative convergence
of states at different iterations at ¢ = 6 with number
of iterations jiconv = 32. We note that, after around 10
iterations, the converging lines for the states (red lines)
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nearly overlap with the converged line (blue line) in Fig. 5.
This verifies the relations of the converging trajectory (red
line) and the converged trajectory (blue line) in Fig. 4a. The
convergence behavior of iMPC-DHOCBF varies over time
and with different v values, typically requiring fewer than
100 iterations except near obstacles (see [38] for details).

8) Convergence with Different Hyperparameters: Figs. 4b,
4c, and 4d show the closed-loop trajectories generated by
solving iMPC-DHOCBEF (solid lines) and NMPC-DHOCBF
(dashed lines) at converged iteration jicony from ¢ = 0
to t = tgm = 45 with different hyperparameters. Both
controllers show good performance on obstacle avoidance.
Based on black, red, blue and magenta lines with the highest
order of CBF constraint me,s = 2 in Figs. 4b and 4c, as
1,2 become smaller, the system tends to turn further away
from the obstacle when it is getting closer to obstacle, which
indicates a safer control strategy. From the lines in Fig. 4d
where mq,y = 1, we can see that the system can still safely
navigate around the obstacle, although it turns away from the
obstacle later than when having one more CBF constraint
in Figs. 4b and 4c, indicating that having CBF constraints
up to the relative degree enhances safety. The blue and
magenta dashed lines in Fig. 4c stop at t = 33 and ¢ = 13,
respectively, due to infeasibility with N = 16. Although
the model has passed the obstacle, NMPC-DHOCBF may
still become infeasible under certain hyperparameter settings
due to overly conservative constraints. This illustrates its
sensitivity to horizon selection. In contrast, iMPC-DHOCBF
generates complete closed-loop trajectories with both N =
16 and N = 24, showing improved robustness to horizon
choices, as seen in Fig. 4b.

9) Computation Time: To compare computational times be-
tween iMPC-DHOCBF and the baseline NMPC-DHOCBEF,
we generate 1000 randomized safe states within the con-
straint set X'. Both methods use the same N and mgyg, and
are evaluated on computation time and feasibility at each
sampled state. Table 2 shows the distributions of compu-
tation times and infeasibility rates for one-step trajectory
generation. For NMPC-DHOCBF, the mean and standard
deviation of computation times grow significantly with in-
creasing N and mgy, whereas iMPC-DHOCBF remains
largely unaffected. Overall, iMPC-DHOCBF achieves much
faster computation—up to 100 ~ 300x speedup over the
baseline—depending on the chosen hyperparameters.

10) Optimization Feasibility: For iMPC-DHOCBE, the in-
feasibility rate increases with a longer horizon N or smaller
Mmebe, While NMPC-DHOCBF shows less sensitivity to these
parameters. As N increases, iIMPC-DHOCBF achieves lower
infeasibility rates than NMPC-DHOCBE. This difference
arises from variations in convergence criteria, warm starts,
and relaxation techniques, as discussed in Rems. 2 and 3.
NMPC-DHOCBEF, solved via IPOPT, applies stricter conver-
gence criteria but benefits from a more refined warm start and
relaxed nonlinear DCBF constraints (15). In contrast, iMPC-
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TABLE 2: Statistical benchmark for computation time and feasibility between NMPC-DHOCBF and iMPC-DHOCBF with randomized
states. The target position is shared among four approaches and the hyperparameters are fixed as v; = 72 = 0.4 for all random

scenarios.
Approaches N=4 N =38 N =12 N =16 N =20 N =24
NMPC-DHOCBF | mean / std (s) | 3.687 £6.360 23.882+17.988 27.329 +20.115 28.953 £22.058 30.970 4+ 23.564  29.929 + 22.105
(Mebt = 2) infeas. rate 5.8% 27.5% 21.1% 16.4% 14.5% 14.4%
NMPC-DHOCBF | mean / std (s) | 2.933 £4.678 19.077 £14.024 20.418 +15.401 22.749 £17.039 24.053 +17.811 25.365 £ 18.211
(Meve = 1) infeas. rate 6.3% 13.9% 13.0% 14.6% 13.8% 15.4%
iMPC-DHOCBF | mean / std (s) | 0.135 4 0.294 0.104 £ 0.242 0.102 £ 0.217 0.131 £ 0.301 0.165 £ 0.400 0.135 £ 0.274
(Mebe = 2) infeas. rate 6.3% 8.0% 10.4% 10.9% 10.9% 10.2%
iMPC-DHOCBF | mean / std (s) | 0.131 &+ 0.286 0.114 £ 0.260 0.109 £+ 0.237 0.137 £ 0.316 0.173 £0.414 0.152 £ 0.317
(Mepr = 1) infeas. rate 6.3% 8.0% 10.4% 10.9% 10.9% 11.1%

DHOCBEF uses relaxed linear CBF constraints (19), which
reduce the feasible region (Fig. 2). This explains the slightly
lower feasibility at small N, but as N grows, the flexible
convergence criteria in iMPC-DHOCBEF lead to significantly
improved feasibility, as confirmed in Tab. 2.

B. CASE STUDY II: POINT ROBOT AVOIDANCE OF
IRREGULAR OBSTACLES WITH UNKNOWN
BOUNDARIES

Here we consider both convex and nonconvex obstacles. The

nearest points to the robot on their boundaries are difficult to

represent with continuous and accurate equations. We train

a DNN for the SBD to predict the nearest points.

1) System Dynamics: We consider the same dynamics as in
Sec. V-A with At = 0.05. System (34) is subject to the
following state and input constraints:

X={x, €R*: =10 -Ty1 <x; <10-Tyy1},

35
UZ{utER2:—1O-I2X1gutglO-ngl}. (33)

2) System Configuration: The five different start points
are (=2, —2), (—2,2), (0.8, —0.8), (0,0.8), (1.2,0.4) and
the corresponding end points are (2,2), (2,—2), (0,0.8),
(1.2,0.4), (0,0), which are marked as solid dots in Fig. 8.
The robot can stop when it reaches inside the target areas
centered at end points with a radius of 0.1. The initial and
reference linear speeds are 0 and the initial and reference
heading angles are calculated by 0y = 6, = atan2(£=4),
where (x¢,y;) denotes the current location and (xTT,yT)
denotes the end point. Five obstacles are displayed in red,
with convex and nonconvex shapes. The other reference
vectors are u, = [0,0]7 and w, = Z;x10.

3) Map Processing: The scope of the map is x € [—2.5,2.5]
and y € [—2,2]. The coordinates of pixels on the boundaries
of obstacles are manually chosen, and we limit the number
of boundary pixels for each obstacle to 100.

4) SBD Training and Evaluation: Our neural network has 9
hidden layers and begins with 512 nodes in the first hidden
layer, denoted as /. The subsequent layers’ dimensions are
defined by (29). Within the range of the map, we extracted
154993 data entries (random locations across the entire map)
for training and another 25741 (random locations outside
of obstacles) for testing. For p obstacles, we use the Mean
Squared Error (MSE) equation (32) to evaluate the accuracy
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of the SBD’s predictions of the nearest points on obstacle
boundaries relative to the robot.

5) DHOCBF:  Since the predicted nearest points 5{? , can
be obtained from the output of the SBD, we choose (27) as
a linearized DHOCBF whose relative degree is 2. Note that
five obstacles correspond to five linearized DHOCBFs. The
sequence of linearized DHOCBEF is defined by (14). From
2D, we have Zpo =71 —1, Z1po=1, Zog =1, Zop =
Zl,l = 0.

6) MPC Design: The cost function of the CFTOC prob-
lem (33) consists of stage cost q("i,w“i,m“’i,nﬂ =

bo (110 =B+ [l = [+ flw] s — i) and
terminal cost p(x] y) = ||x] v — X;||%, where Q = P =
10-Zy,R =1, anﬁ S = 1000 - Zy,. In this case study, the
slack variable wi ki is subject to the constraint in (20) for
iMPC-DHOCBF to enhance feasibility while guaranteeing
safety, as discussed in Thm. 2.

7) Convergence Criteria: We use the same absolute or
relative convergence criteria from Sec. V-A-5. The hyperpa-
rameter related to the decay rate is set to a relatively smaller
value as y; = 0.1 to reduce the needed maximum iteration
number which is set as jpa = 30.

8) Solver and CPU Specs: For iMPC-DHOCBF, we used
OSQP [44] in Python to solve the convex optimizations at
all iterations. For model training and inference, we used
Pytorch. The training was conducted on a Linux desktop
equipped with a Nvidia RTX 4090 graphics card. For infer-
ence, we used a Linux laptop with an AMD Ryzen 7 5800U.

9) SBD Prediction Accuracy: The prediction accuracy of
SBD is demonstrated in Figs. 6 and 7. In Fig. 6, we selected
eight different locations from testing data on the map, each
represented by a solid dot in a corresponding color. For these
eight locations, there are five reference nearest points on
the obstacle boundaries (diamonds) and the nearest points
predicted by the SBD (plus symbols). When the robot is near
the convex boundary of an obstacle, the predicted nearest
points closely match the references. However, near concave
boundaries, there is some deviation, though not substantial.
Note that the predicted nearest point of the black dot is
closer than the ground truth, demonstrating that the SBD
can interpolate from sparse pixels to predict locally optimal
nearest points, as discussed in Rem. 5. Figure 7 shows
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TABLE 3: Statistical benchmark for computation time and feasibility for iMPC-DHOCBF with SBD. The randomized states and end
points are shared among four approaches and the other irrelevant hyperparameters are fixed for all scenarios.

Approaches N =4 N =38 N =12 N =16 N =20 N =24
iMPC-DHOCBF mean / std (s) | 0.029£0.020 0.065 +0.042 0.126 £0.069 0.202+0.090 0.340 £0.126 0.446 £+ 0.138
(Mert = 2,71 = v2 = 0.1) infeas. rate 4.5% 5.4% 5.0% 6.0% 5.9% 6.4%
iMPC-DHOCBF mean / std (s) | 0.028 +0.020 0.0563 £0.030 0.108 £0.055 0.167 £0.068 0.235+0.082 0.374 + 0.106
(mert = 1,71 = 0.1) infeas. rate 4.9% 5.4% 4.9% 5.4% 5.0% 5.3%
iMPC-DHOCBF mean / std (s) | 0.031 +£0.020 0.073 £0.046 0.141+£0.070 0.2424+0.091 0.416 £0.113  0.545 +0.144
(Mevf = 2,71 =72 = 0.2) infeas. rate 4.6% 4.9% 6.3% 7.5% 9.3% 10.9%
iMPC-DHOCBF mean / std (s) | 0.032+£0.024 0.071+£0.040 0.139£0.055 0.217+0.063 0.296 £ 0.063 0.435 = 0.063
(merr = 1,71 = 0.2) infeas. rate 4.5% 4.6% 4.3% 4.9% 4.5% 5.0%
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FIGURE 6: Demonstration of SBD prediction performance. Solid
dots indicate the positions of eight robots. Diamonds show
the ground-truth nearest points on obstacles, while plus signs
denote the SBD predictions. Most predictions closely match the
ground truth, except for the one corresponding to the green dot,
which shows a larger deviation.

the relationship between the SBD’s prediction error (MSE)
and the robot’s positions in 3D and projected views. Since
testing data are from outside the obstacles, MSE within
obstacles is not shown (darkest areas). The MSE is relatively
small near convex boundaries (darker colors) and larger near
concave boundaries (brighter colors). Higher MSE values
are observed near concave boundaries and extend along
certain radial lines due to the presence of multiple equidistant
nearest points on the obstacle boundaries relative to these
lines. During data collection, one of the equidistant points
is randomly chosen as a reference. This randomness leads
the trained SBD to predict a nearest point as a blend of
equidistant candidates, causing noticeable deviation from the
reference point and a high MSE.

10) Safe Trajectory Generation: Five safe closed-loop tra-
jectories start from corresponding start points and end in
corresponding target areas, shown in Fig. 8. We observe that
even with multiple obstacles, including those with complex
shapes like the sharp protrusions of a pentagram, the robot
navigates safely in free space, regardless of proximity to
obstacles or path length. Under the guidance of waypoints,
the generated trajectories are smooth. They can be further
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improved by increasing the number of waypoints, using
adaptive warm starts, and refining convergence criteria.

11) Computation Time and Feasibility: In order to compare
computational time and feasibility of our proposed iMPC-
DHOCBEF under different hyperparameters, 1000 indepen-
dent randomized safe states are generated in state constraint
X in (35). To make a fair comparison, the randomized states
and end points are shared among four sets of hyperparame-
ters and the other irrelevant hyperparameters are fixed for all
scenarios. We can observe in Tab. 3 that as N increases, the
computation time per step significantly increases. Similarly,
when mgpe increases or -yi,7ye increase, the computation
time per step also rises. The computation time is primarily
affected by N and mgs because each call to the SBD
consumes a certain amount of time. Increases in N and mgps
linearly raise the number of SBD calls, thus significantly
increasing the computation time per step. However, these
hyperparameters are shown not to affect the infeasibility rate
of the iMPC-DHOCBF method proportionally. Compared to
the iMPC-DHOCBF in Tab. 2, iMPC-DHOCBF triggering
SBD still maintains a fast computation speed per step and
has a lower infeasibility rate, even in a more complex map.

C. CASE STUDY lil: CIRCULAR ROBOT NAVIGATION IN A

NARROW TRACK WITH UNKNOWN BOUNDARIES
Similar to Sec. V-B, we will train a DNN for the SBD to
predict the nearest points.

1) System Dynamics: The robot is circular with a radius of
0.4, and its geometric center possesses the lateral vehicle
model (see Egs. (2.52), (2.53) in [51]) expressed by

Tiy1l — Tt vt cos(Pe + Pe) At 0 0
Yt — Yt ve sin(pe + Bi) At 0 0
Yip1 —Pe| reAt 0 0 ul,¢
Vg1 — Ut B 0 At 0 |:U2,t:| ’
Bt+1 — Bt E:At m S,,f-&-e) At
Ti41 — Tt Fy At If—zlfAt
(36)
where
Et:CTlricflf'l‘t— CerCr +gsin(d)) S
m(ve + €)2 m(ve + €) v + €
1 Crl2 + C,l2 (37
Fi= o <(cflf +Crly)Be — Wn> :

x; = [xt,Ys, Vs, vs, Br,7e)T captures the 2-D location,
heading angle, linear speed, slip angle and yaw rate; u; =
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FIGURE 7: 3D visualization of the MSE of the testing data. = and y represent the positions of the testing points, while MSE represents
the prediction error corresponding to the point (z, y). The maximum MSE is 0.029 at (1.9,0.5).
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FIGURE 8: Five closed-loop trajectories (black) with different start and end points controlled by iMPC-DHOCBF with mgy = 1, N =
24,~1 = 0.1. The obstacles are shown in red. The waypoints used in each subfigure are: (—0.2,1.0), (-0.5, —0.2), (1.0, —0.2), (1.5, —0.3);
(—0.6,0.0); (1.0,1.2); (0.2, —0.5), respectively. The animation video can be found at https://youtu.be/G9S7y90LRig.

[w1, uz,t]T represents linear acceleration (u1) and the front
wheel steering angle (us), respectively. The system is dis-
cretized with At = 0.05. Other parameters are defined as
¢ = 0,m = 1500, = 9.8,lf = 1.2,l, = 16,1, =
2500,Cy = C, = 10000,e = 11. Let X C RS and
U C R? denote the state and input constraint sets, re-
spectively. We define x; € & and u, € U if and only if
Tty Yty Yty Vi, Tt Ut g, Uz € [—10,10] and By € [—1,1].

2) System Configuration: We plan to generate five con-
nected closed-loop trajectories, where the start point of
each trajectory is the end point of the previous one. The
initial location and four waypoints marked as solid dots
are (4, —4.5),(2.5,-2),(2,2),(—4,2),(—7.5,—3.3) and the
end point is (—2.5,—4.25) in Fig. 10. The robot can
terminate the current trajectory when its center reaches
inside circles centered at each waypoint with a radius of
0.1 and then begin a second trajectory. The initial and
reference linear speeds, slip angles and yaw rates are 0
and the initial and reference heading angles are calculated
by Yo = ¢ = atanQ(z:i:Zi), where (z,y;) denotes the
current location and (z,,y,) denotes each waypoint. The
robot’s operating area is a narrow track enclosed by two bar-
shaped obstacles with point contact connections. The width
of the track varies within [v/2, 2], and the track shape consists
of Z-shaped bends and S-shaped bends. The other reference
vectors are u, = [0,0]7 and w, = T; 4.
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3) Map Processing: The scope of the map is x € [—10, 6]
and y € [—6,6]. We manually set the coordinates of pixels
on the two obstacle boundaries in contact with the track,
limiting each boundary to a maximum of 400 pixels. This
is equivalent to enclosing the free track space with a closed
shape formed by two boundary lines from the two obstacles.

4) SBD Training and Evaluation: Our neural network’s
structure is completely identical to that in Sec. V-B-4. Within
the range of the map, we extracted 714875 data entries
(random locations across the entire map) for training and
another 48761 (random locations inside the track) for testing.
We use the same MSE (32) to evaluate the accuracy of
the SBD’s predictions of the nearest points on obstacle
boundaries relative to the robot.

5) DHOCBF: The design of DHOCBFs is exactly the same
as that in Sec. V-B-5. Note that our robot is circular,
therefore, equation (27), which imposes constraints on the
robot’s center position, should be shifted a distance equal to
the radius toward the robot’s center.

6) MPC Design: The cost function of the CFTOC prob-
lem (33) consists of stage cost ¢(x] ,,uj,,w],;) =

N=1, j - ;
w0 (XL =%ellE + [Juf = f[f + [Jw] ), ; —wr|[§) and
terminal cost p(x] y) = |[x] y — X,|[5, where Q = P =

10 -Zs,R = I3 and S = 1000 - Z4. In this case study, the
slack variable wi’k’i is subject to the constraint in (20) for
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FIGURE 9: 3D visualization of the MSE of the testing data. = and y represent the positions of the testing points, while MSE represents
the prediction error corresponding to the point (z, y). The maximum MSE is 0.690 at (—5.5, —2.1).

iMPC-DHOCBF to enhance feasibility while guaranteeing
safety, as discussed in Thm. 2.

7) Convergence Criteria: same as Sec. V-B-7.
8) Solver and CPU Specs: same as Sec. V-B-8.

9) SBD Prediction Accuracy: The prediction accuracy of
SBD is demonstrated in Fig. 9, where we show the rela-
tionship between the SBD’s prediction error (MSE) and the
robot’s various positions. Since the testing data was selected
from the robot track, the MSE outside the track on the chart
is devoid of values and the darkest. We can observe that when
the robot’s position is near the convex boundary of the track,
the MSE of the predicted nearest point is relatively small
(indicated by darker colors). Conversely, when the robot’s
position is near the concave boundary of the track, the MSE
of the predicted nearest point is relatively large (indicated by
brighter colors), which is similar to the observations made in
Fig. 7. Unlike Fig. 7, not all concave boundary areas exhibit
large prediction errors, e.g., the concave boundary sections
of Z-shaped bends display a linear pattern of increasing
MSE while concave boundary sections of the S-shaped bends
do not show large MSE. This shows that the concavity of
a boundary relative to a point outside the boundary also
affects the MSE of nearest point prediction. The greater the
concavity, the larger the prediction error. Additionally, we
noted that the largest MSE is 0.690, which is much larger
than the maximum MSE in Fig. 7. The peak MSEs in Fig.
9 are also significantly larger than that in Fig. 7. This is
because the size of the map also affects the prediction error.
Large maps often require significantly large quantities of
training data to reduce prediction errors to very low levels.
We can enhance safety using the approach described in
Rem. 6, or adjust the slack-variable weight S to reduce the
conservativeness introduced by prediction errors.

10) Safe Trajectory Generation: We evaluated the robot
using two models: the vehicle model (36) and the unicycle
model (34). The parameters and design of control strategy of
the unicycle model are identical to those described in Sec.
V-B. Five closed-loop trajectories—depicted in pink for the
vehicle model and green for the unicycle model—connecting

xvi
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FIGURE 10: Five connected closed-loop trajectories (pink for the
vehicle model and green for the unicycle model) are generated by
iMPC-DHOCBF with m¢y = 1, N = 24, and +; = 0.1. Each trajec-
tory starts where the previous ends. The narrow track is enclosed
by two red obstacles. The method ensures safe navigation in tight
spaces; animation is available at https://youtu.be/G9S7y90LRig.

the waypoints are shown in Fig. 10. We can see that even
within a narrow track, sometimes requiring sharp turns, the
robot governed by both models is still able to navigate safely,
demonstrating the scalability of our method across different
dynamic constraints. In Fig. 11, we can observe the trends
in the robot’s states and inputs as they change with each
time step during its movement. Since the reference values
for uy,uy in the cost function are all zero, they fluctuate
within a small range around zero as a baseline. All system
variables are subject to the corresponding constraints X’ and
U, which highlights the safety and planning features under
constraints of our implementation. In terms of computational
complexity, the unicycle model takes an average of 0.6
seconds per time step, while the vehicle model takes 0.7
seconds. The slightly higher computation time of the vehicle
model is mainly due to its more nonlinear dynamics (e.g.,
slip angle 3 and yaw rate r), with additional factors detailed
in Sec.IV-E-6.
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FIGURE 11: States and control inputs vary over time steps. These
system variables are relative to the motion of the robot governed
by the unicycle model (left) and the vehicle model (right) shown
in Fig. 10 and are subject to the corresponding constraints X', U{.

VI. CONCLUSION & FUTURE WORK

We proposed an iterative convex optimization procedure for
safety-critical model predictive control design. Central to
our approach is a learning-based safety boundary detector
(SBD) to predict linearized safety boundaries for unsafe
sets with arbitrary shapes, the transformation of these safety
boundaries into discrete-time high-order control barrier func-
tions (DHOCBFs), and relaxations for the system dynamics
and for DHOCBF in the form of linearized constraints.
We validate iMPC-DHOCBF on a unicycle robot in three
environments (circular obstacles, irregular obstacles, and a
narrow track) and extend it to a robot with vehicle dynam-
ics in the narrow-track scenario. Our method outperforms
the baseline in computation time and feasibility rate, and
both models safely follow pre-designed waypoints through
complex environments. There are still some limitations of
iMPC-DHOCBF with SBD that could be ameliorated. One
limitation of the proposed method is for locations near the
concave boundary of an unsafe set, the SBD’s prediction
error for the nearest point remains relatively large. Another
limitation is that our DNN-based SBD does not provide a
strict a priori bound on its prediction error. Moreover, the
feasibility of the optimization and system safety are not
always guaranteed at the same time in the whole state space.
We will address these limitations in future work.
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